
UNIVERSITY OF CINCINNATI

22 January, 2001

I, B r a d l e y M . K u h n ,
hereby submit this as part of the requirements for the
degree of:

Master o f Sc ience

in:

Dept. of Elec. and Comp. Eng. and Comp. Science

It is entitled:

Considerations on Porting Per l to the Java

V i r t u a l M a c h i n e

Approved by:
 Fred Annexs te in
 J o h n F r a n c o
 L a r r y W a l l
 H o n g w e i X i

Considerations on Porting Perl

to the Java Virtual Machine

A thesis submitted to the

Division of Research and Advanced Studies

of the University of Cincinnati

in partial fulfillment of the requirements for the degree of

Master of Science

in the Department of Electrical and Computer Engineering and

Computer Science

of the College of Engineering

2001

by

Bradley M. Kuhn

B.S., Loyola College In Maryland, 1995

Committee Chair: John Franco, PhD.

Abstract

The Java Virtual Machine (JVM) is perhaps the most interesting aspect of the Java
programming environment. Much attention has been placed on porting non-Java languages
to the JVM. Such ports are useful since JVMs are now embedded in hardware devices,
as well as in software applications such as web browsers. In addition, well designed JVM
ports can utilize the JVM as a common object model for multiple languages, allowing larger
applications to easily be written in and scripted with multiple programming languages.

This thesis presents a survey of possible approaches for porting non-Java languages to
the JVM. The advantages and disadvantages of each approach are considered. Examples of
JVM ports of other programming languages, such as Python, Scheme, and Tcl are presented
and considered.

The focus, however, is a port of Perl to the JVM. The internals of the existing Perl
implementation are discussed at length with examples. The perl front-end parser, lexer and
intermediate representation (IR) are described in detail. The default Perl compiler back-end,
called the Perl Virtual Machine (PVM), is considered and described.

Two approaches for porting Perl to the JVM are presented. The first approach reuses
the existing perl front-end via Perl’s B module to compile directly to JVM assembler (using
Jasmin syntax). This approach is described and examples are given. The problems of
mapping the PVM onto the JVM, the lack of generalization of the existing perl IR, and
complications caused by the JVM bytecode verifier are introduced and explained.

The second approach massages the existing perl IR into the Kawa system’s more gener-
alized IR. This approach is much more successful than direct compilation, and reasons are
given to make that case. Kawa’s IR is presented, and an example of a Perl program compiled
to Kawa’s IR is given.

Finally, conclusions and lessons learned from this work are presented. A framework
for the future work required to complete a Perl port to the JVM (via Kawa) is given. A
brief comparison between the Kawa/JVM infrastructure and Microsoft’s .NET/C# system
is presented.

Copyright c© 2000, 2001 Bradley M. Kuhn.

Verbatim copying and distribution of this entire thesis is permitted in any medium, provided
this notice is preserved.

Dedication

I dedicate this work to my fiancée, Elizabeth A. McKeever. She indeed knows how to
love a hacker—which is certainly not an easy task. Thanks, keever, for always reminding me
there is a world outside of computer science.

Acknowledgements

First, I thank the Usenix Association for a student scholarship and stipend during
the early research of this work. In addition, the Department of Electrical and Computer
Engineering and Computer Science provided me with a University Graduate Scholarship for
much longer than I would have thought possible, and for that I am very grateful.

I would like to thank my committee for taking the time to read my thesis and listen to my
defense. I give special thanks to Larry Wall for traveling so far to serve on my committee.

Linda Gruber, the ECECS graduate program coordinator, deserves special mention. Her
relentless work to ensure that graduate students have what they need is an asset to the
department.

I would also like to thank the other Canonical Hackers for their continuous support of
my work and my ideas, even when I doubted them myself.

I thank also the Perl community in particular and the free software community in general.
Without the plethora of free software that is available for Perl and Java, this work would
not have been possible.

Finally, I am grateful for the Cosource system, and those who helped fund my software
development through that system.

http://www.ebb.org/keever
http://www.usenix.org/students
http://www.ececs.uc.edu
http://www.ececs.uc.edu
http://www.wall.org/~larry
http://www.canonical.org
http://www.cosource.com

Contents

1 Introduction 1
1.1 The Java Virtual Machine . 2

1.1.1 Purpose of the JVM . 2
1.1.2 The JVM Class File . 2
1.1.3 Code Segments in the JVM . 3
1.1.4 Bytecode Verification and Security 3

1.2 Why Port Non-Java Languages to the JVM? 4
1.2.1 Hardware JVMs . 4
1.2.2 Embedded Software JVMs . 5
1.2.3 Language Integration via the JVM 5
1.2.4 The .NET Factor . 7

1.3 Porting Challenges . 8
1.3.1 General Challenges . 8
1.3.2 Perl-Specific Challenges . 8

2 Possible Approaches 11
2.1 JNI . 11
2.2 Survey of Approaches . 12

2.2.1 Implementation of a Language Interpreter in Java 13
2.2.2 Compilation from Source Language to Java 14
2.2.3 Direct Compilation to JVM Bytecode 15
2.2.4 Mapping Language Idioms onto the JVM 15

2.3 Which Approach for Perl? . 15

3 Internals of perl 17
3.1 perl As a Compiler and Virtual Machine . 17
3.2 The perl Intermediate Representation . 18

3.2.1 The “Defined” Example . 19
3.2.2 The “Add and Print” Example . 21

3.3 Accessing the IR via B . 23

i

4 First Approach—Direct Compilation 24
4.1 Using Jasmin Assembler . 24
4.2 Data Type Support . 25
4.3 Putting It Together with B . 26
4.4 The “Defined” Example with B::JVM::Jasmin 28
4.5 Failure of this Method . 29

5 Second Approach—Kawa Integration 32
5.1 A New Layer of Abstraction . 32
5.2 The Kawa IR . 33
5.3 The “Add and Print” Example with Kawa 34

6 Conclusions and Future Work 37

ii

List of Figures

1.1 Object Oriented JVM Instructions . 3
1.2 Diagram of Language Integration via the JVM 6
1.3 A Simple Example of a Tied Perl Scalar . 9

3.1 “Defined” Perl Program Example . 19
3.2 OP-Tree of “Defined” Example . 20
3.3 “Add and Print” Perl Program Example . 21
3.4 OP-Tree of “Add and Print” Example . 22
3.5 Partial Stack Evaluation of “Add and Print” Example 23

4.1 Example of B::JVM::Emit Interface . 25
4.2 Portions of the SvBase Class . 26
4.3 B::JVM::Jasmin Code for handling “gvsv” SVOP 27
4.4 B::JVM::Jasmin Evaluation of “Defined” Example 30

5.1 “Add and Print” Example in Kawa’s IR . 35

iii

Chapter 1

Introduction

Since its release in the late 1980s, the Perl programming language has evolved from a rel-
atively simple scripting language to an advanced, portable, garbage collected programming
language. The current version of Perl supports sophisticated features such as object ori-
ented programming, functional programming, advanced pattern matching and complex data
structures. Separate to the evolution of Perl, the Java language environment (which includes
the Java Virtual Machine) has become a popular choice in its own right, because of Java’s
comparable portability, its threading model, and its garbage collected object model. The
Java and Perl communities remain largely separate, partly due to a lack of tools to integrate
the two languages.

This thesis addresses the problem of porting Perl to Java environment. To begin, in
this chapter, the Java Virtual Machine (JVM) is introduced and briefly described. The
usefulness of integrating languages, such as Perl, with Java through the use of the JVM
itself is addressed. Further, the particular importance of direct JVM ports is explained.
Following that, some specific challenges on porting languages such as Perl to the JVM are
introduced.

In Chapter 2, the various possible approaches for porting non-Java languages to the
JVM are introduced and discussed. In each case, the possibility of using that approach
for Perl is briefly addressed. Then, in Chapter 3, the internals of perl1 are discussed and
explained. Following that, in Chapter 4, the first approach attempted for the Perl/JVM port
is presented, and its drawbacks are explained. A second approach is presented in Chapter 5,
and its inherent advantages are explained. Finally, Chapter 6 draws some conclusions based
on this work, and addresses how and why this work should continue.

1In the Perl community, the lowercase word, “perl”, refers to the canonical (and currently only) imple-
mentation (which is written in C) of Perl. The uppercase word, “Perl”, refers to the language itself. This
convention is also used throughout this document.

1

1.1 The Java Virtual Machine

The Java Virtual Machine (JVM) is described in detail in [19, 17]. In this section, a summary
of the JVM is presented. The information in this chapter is the prerequisite knowledge about
the JVM required for understanding this thesis.

1.1.1 Purpose of the JVM

The JVM was originally designed as the “cornerstone of the Java programming language” [17,
page 3]. The developers of Java wanted a virtual platform that would allow Java to be as
portable as possible. With that goal in mind, they developed the JVM as a generalized,
assembler-like instruction set for object oriented programming.

The JVM is a well defined specification for a virtual architecture. Each implementation
of the JVM must adhere to this specification. This well defined specification is key to the
success of the JVM—without it, incompatible JVM environments would be common. By
contrast, with a clear specification available, incompatibilities in particular JVMs can easily
be established as violations of the specification. A number of both proprietary software and
Free Software JVM implementations that adhere to the specification now exist.

1.1.2 The JVM Class File

The user interface to the JVM is through the class file. This class file has a strict format.
The strictness of the format is required in part so that the JVM specification remains well
defined. However, the strict format is also in place for security reasons. “Security” in
this context refers to the ability for the JVM class file loader to “verify” the class file.
Verification allows the class loader to make some assurances to the system running the
JVM that the given class will not attempt to over-step its bounds. Details about security
and the verification process are discussed in Section 1.1.4.

Each JVM class file contains:

• a constant pool for constants and literals used by the class.

• a list of static and non-static fields in the class (and associated flags).

• methods in the class (with flags and function signatures).

• the superclass of the current class and any interfaces this class implements.

• code segments that implement this class’ methods.

The JVM class file is finely tuned to the Java language. However, most object oriented
languages (and even most functional and imperative languages) can be modeled to fit into

2

Instruction Purpose
invokevirtual Call a virtual method
invokespecial Call a class or object initializer method
invokestatic Call a static method
new Create new object instances from a class
putfield Set a field in an object

Figure 1.1: Object Oriented JVM Instructions

this relatively simple object oriented model. Thus, the close relationship of Java and the
JVM does not pose a particular impediment to porting non-Java languages to the JVM.

It should be duly noted, however, that strong typing is enforced for the methods and
fields of a class file. This can cause problems when porting more weakly typed languages
to the JVM. Section 1.1.4 discusses this typing enforcement. Section 1.3 discusses how this
issue impacts porting non-Java languages to the JVM.

1.1.3 Code Segments in the JVM

The code segments in the class file use the JVM instruction set. This instruction set
includes commands typically found in most stack-based assemblers. Such commands includ-
ing floating point, integer, and pointer operations, as well as common control instructions.
However, the key difference between the JVM and a typical assembler is that additional
instructions, specific to object oriented interfaces, are included. Figure 1.1 lists a few such
instructions.

To pass arguments to method calls, an operand stack is used. Items are pushed onto the
operand stack before a method is invoked. Upon completion, the return value of the method
is left on the operand stack. The JVM verifier, discussed in the next section, prohibits using
the operand stack for any other purpose.

1.1.4 Bytecode Verification and Security

In most cases, all classes loaded by a JVM are subject to a process called “bytecode ver-
ification”. This verification is done to ensure that classes do not perform operations that
may cause the JVM to crash. The verification process checks that all arguments on the
operand stack are legal. In addition, the verifier ensures that all types of all variables passed
to methods are correct, and that all load and store operations have correct types.

To accomplish this task, the verifier must do extensive analysis on the JVM code. This
analysis is briefly summarized in [17, pages 128–130]. The analysis is discussed in detail

3

in [11, 12, 13]. The details of this verification analysis are somewhat beyond the scope of
this thesis; however, details are mentioned later in those cases that impact this work directly.

Of course, this verification analysis introduces overhead. The argument is made, though,
that this overhead is worthwhile, since JVM code execution can afterwards proceed more
quickly without checking types and stack limits. For such quick execution to take place,
the JVM must assume that the verifier has checked all these parameters. In addition,
the execution process must assume that verification rejects invalid code constructed with
malicious intent.

However, bytecode verification is not without disadvantages. The verifier can limit some
otherwise valid uses of the JVM. In fact, the first approach used in this project was im-
peded (and eventually rendered futile) because code was generated that could not pass the
verification. Section 4.5 discusses this problem in detail.

Note that JVM bytecode verification is only a subset of those checks performed when
an “applet” is loaded from the network. In those cases, more extensive checks are done to
ensure that access to the local operating system is severely limited.

1.2 Why Port Non-Java Languages to the JVM?

The JVM was designed primarily with the Java language in mind. Why, then, is it useful
to port languages other than Java to the JVM? In this section, a number of arguments are
presented to answer that question.

1.2.1 Hardware JVMs

Traditionally, JVM implementations have been done in software. However, implementation
of JVM environments in hardware devices has become both a focus of intense research and
a physical reality.

Many researchers have studied the problem of implementing JVMs in hardware [21, 8]
with promising results. Supporting the JVM directly in hardware is an inevitability and
will likely become quite common. One researcher even built a prototype hardware JVM
implementation [9].

Meanwhile, in the commercial world, SUN has already licensed picoJava [22], a cen-
tral component core for a JVM microprocessor, to a number of companies. According to
SUN [25], these companies plan to incorporate this hardware technology into future products.

Thus, it is very likely that hardware devices with native JVM implementations will be
common in the years to come. Developers should not be limited to only the Java program-
ming language when writing software for these hardware devices. Porting non-Java languages
to the JVM will provide choice to these developers, so they can choose the best language

4

for the job. Such choice will remove the common limitations imposed by engineering or
marketing requirements that demand a particular hardware device.

1.2.2 Embedded Software JVMs

While hardware JVMs are a look to the future, embedded software JVMs are already com-
mon. Since the early days of the Java environment, various web browsers have included
embedded JVMs. These embedded JVMs allow web site designers to develop “applets” that
will run on the client computer. Web browsers’ embedded software JVMs provide a simple,
cross-platform application delivery system that has become standard in many communities.

However, in an effort to provide some security, strict controls are placed on JVM applets.
These restrictions are even more strict than those enforced by the verification process (see
Section 1.1.4). These additional restrictions make it relatively impossible for one to write
applets (or portions of applets) in a language that has not been natively ported to the JVM.

For example, the simplest way to interface non-Java languages to the JVM is via the
Java Native Interface (JNI), which allows system level programs (in C) to access the JVM.
(Section 2.1 discusses this process in detail.) However, JNI access is not permitted by
applets. Thus, even though the user might have an interpreter or a compiler installed for
a given non-Java language, an applet from a web site cannot take advantage of that fact.
Therefore, native JVM ports of non-Java languages are needed in this case.

Web browsers are indeed an important environment for embedded software JVMs. How-
ever, web browsers are not the only place one finds JVMs embedded in software. Recently,
an eight-bit software JVM was released [23]. This software will give new life to eight-bit pro-
cessors, allowing a modern language (i.e., Java) to run on these smaller processors. Native
ports of non-Java languages will give developers a chance to target additional languages to
such systems.

Finally, some personal digital assistants (PDAs), such as PocketLinux [28] have chosen to
provide the developer interface via a JVM. Since the JVM is the developer interface, most
software for these PDAs is written in Java. However, native ports to the JVM will allow
developers to write software for these PDAs easily in other languages. This capability will
make such PDAs more useful to both software developers and users.

1.2.3 Language Integration via the JVM

While all these reasons for porting non-Java languages to the JVM are compelling, the most
interesting reason is less obvious. Even though the JVM is specifically tuned for the Java
programming language, it still can be used as a generalized object model. Nearly all popular
object oriented features are supported on the JVM, or via its standard supporting libraries.
Thus, if a JVM compiler for a non-Java language is properly aware of the object oriented
features of the JVM, the JVM itself can be used as a generalized object model.

5

instantiates foo
on JVM

request: B’s object

receives request

Language A Language B

Handles calling
convention

foo now exists
as JVM object

object now available
fooFull access to

foo

Allows Language A to

in Language B.
access objects written

Figure 1.2: Diagram of Language Integration via the JVM

6

Such a generalized object model can provide a tightly coupled way for object sharing
between different languages. Figure 1.2 shows generally how this might be accomplished. If
both Language A’s and Language B’s JVM ports are aware of the JVM object model, both
will access JVM objects as if they were native objects. The JVM would serve objects to the
languages, and each language would use its own natural way to access objects—possibly not
even aware that the objects were implemented in another language.

Some projects already exist that are beginning to successfully use the JVM in this way.
For example, the JEmacs project [7] uses the JVM as a central component of an Emacs
implementation. Emacs can be configured and scripted in both Scheme and Java. Work to
support Emacs Lisp and Common Lisp is already underway.

Thus, the JVM can be used as the central engine for an application. If many languages
have been ported to the JVM, in a manner that makes the language aware of the JVM’s
object model, one can design an application that allows users to script and configure the
application with all supported languages. This approach is likely one of the most compelling
reasons to port non-Java languages to the JVM.

1.2.4 The .NET Factor

It has been argued [27] that Microsoft’s new .NET architecture [20] is better designed to
be a generalized, cross-language object model. Such arguments often claim the death of the
JVM as a cross-platform architecture, and look to Microsoft’s technology as the future.

The .NET system indeed differs from the JVM. The .NET system was designed with
language integration in mind. However, the places where .NET has particular advantages
over the JVM mostly amount to mere conveniences [29]. While the designers of the JVM
did not make cross-language features a priority, it was clearly on their mind [17, page 3]. To
dismiss the JVM merely because it is not a perfect solution seems short-sighted.

In addition, the JVM and its related libraries have had over five years to mature. Indeed,
in many circles, the JVM has just finally reached the point where it is considered a stable
platform. Giving up and jumping to the latest and greatest technology will likely lead to
more waiting for stability.

There is also little reason to wait. Already, dozens of languages have been ported to the
JVM [26], and many of them do use the JVM in a way that is aware of its object model.
Some work remains to integrate these ports, but that is not the hardest part of the job. The
hard part of porting these languages to the JVM is done.

By comparison, only two or three programming languages have been ported to .NET,
and all ports were funded by Microsoft itself. Not only that, none of the .NET system is
available as free software, while there are a number of free software implementations of the
JVM. Also, many of the programming language ports to the JVM are also free software.
The JVM and ports to it are an open, established architecture. Thus the JVM, while not
perfect, is currently preferable to the .NET system.

7

1.3 Porting Challenges

While the JVM definitely works well as a language-neutral environment, the task of porting
new languages to the JVM is not without challenges. In this section, general challenges as
well as those specific to Perl are discussed.

1.3.1 General Challenges

Porting a new language to the JVM is a bit more complicated than the typical problem of
targeting to a new chip-set. The JVM bytecode is at a higher level than most assemblers,
and thus more care must be taken when generating code.

For example, for a JVM port to be effective, it must emit code that can pass the bytecode
verification process. Proper bytecode verification is more than just a rubber-stamp; some
JVMs simply reject code that cannot be verified. Other JVMs might support code without
verification, but JVMs are rarely regression tested with unverified code. Bugs are commonly
found in JVMs when unverifiable code is run. Finally, there is the problem that unverifiable
code can never run as applets.

Therefore, any JVM code emitted by a compiler must be verifiable. To emit verifiable
code, it usually means that some operations that seem completely legal given the JVM
specification are not possible. Therefore, a compiler writer must not only be intimately
familiar with the JVM specification, but must also be aware of the specific expectations of
the verification process. (Section 4.5 describes trouble encountered in this work with the
JVM bytecode verifier.)

Another challenge faced when porting to the JVM is its object oriented nature. First,
the compiler writer must find a way to reasonably map a particular language structure onto
the JVM concept of a class. Most languages have a comparable structure to a class

(e.g., lambda in Scheme, or packages in Perl). However, the details are sometimes tricky.
For example, in Scheme, generating a class for every single lambda in a program can be a
performance hit, if not done with great care.

Finally, for a JVM port to be as useful as possible, the compiler must generate code that
is aware of the JVM object model. If this is not done, the port will likely be functional, but
will not reap the advantages discussed in Section 1.2.3. This issue represents the biggest
challenge of a JVM port, particularly when integration with other non-Java languages is
desired. Clear object interfaces must be defined for inter-language access to be successful.

1.3.2 Perl-Specific Challenges

In addition to the general challenges that the JVM presents inherent in its nature, there are
also some challenges that are specific to porting Perl to the JVM. Perl is a unique language;

8

This program:
package AlwaysOne;

sub FETCH { return 1;}
sub STORE { print "warning: cannot change this variable\n"; }
sub TIESCALAR { my($c, $r) = @ ; return bless \$r, $c; }
package main;

tie $x, AlwaysOne;

print "$x\n"; $x = "Hello World\n"; print "$x\n";
generates the output:

1

warning: cannot change this variable

1

Figure 1.3: A Simple Example of a Tied Perl Scalar

Perl has both cultural and technical aspects that make it different from other programming
languages. These issues create some specific challenges in porting Perl to the JVM.

First, parsing Perl is a particularly difficult problem. The Perl language is designed with
lots of syntactic sugar and special cases. There are reasonable and laudable design goals
(which are beyond the scope of this thesis) for this design. Regardless, though, this design
makes Perl particularly difficult to parse. Currently, the only known full parser for Perl is
the one that ships with the perl distribution, and it is infamously very complex.

There is also no formal specification for Perl. While this will likely change for the next
major version of Perl, the current mantra of the Perl community is “the implementation is the
specification”—meaning that whatever perl does defines what the language Perl itself should
always do. Implementing a new compiler, given that no specification exists, is particularly
difficult.

Finally, Perl’s native data types are particularly uncommon. While on the surface, the
native data types (array, hash, and scalar) seem common, there are some frequently used
special cases that introduce complexity for a compiler writer. For example, Perl’s tie feature
allows the programmer to arbitrarily make any variable in the language a full-fledged object,
where arbitrary code is executed for any variable access. Figure 1.3 shows a simple example
of a tied Perl scalar.

In this example, the scalar variable, $x, is tied to the package AlwaysOne. The example
shows how the semantics of variable assignment and variable use are changed utterly by tie.
The FETCH and STORE methods replace assignment and use of $x.

As can be seen through the example of tie, Perl’s data types, while seemingly straight-
forward at first glance, are actually quite advanced and complex. A JVM port of Perl must
handle these special cases. Care must be taken so that the underlying data structures used

9

to implement Perl’s data types can support these advanced features.

10

Chapter 2

Possible Approaches

This chapter discusses possible approaches for porting Perl to the JVM. These approaches are
not necessarily specific to Perl, and when appropriate, examples are given of other languages
for which JVM ports of a given nature have been attempted. In addition, advantages and
disadvantages to each approach are presented.

2.1 JNI

Even though it does not actually accomplish a JVM port, the simplest method for integrating
a non-Java language with the JVM is worth noting here. This simple method is accomplished
via the Java Native Interface (JNI), which provides native operating system access to the
JVM.

JNI is primarily an interface between the C and Java languages. JNI provides a C API,
so that C programmers can access objects and methods that exist on the JVM. In turn,
Java methods can be implemented in C.

The JNI is not even close to a C port to the JVM. It merely provides, in those specific
circumstances where a JVM is run as a process on a full-fledged operating system, the ability
to execute calls between C and Java. Thus, the JNI has the serious downside that it cannot
be used directly to gain the advantages discussed in Sections 1.2.1 and 1.2.2. Namely, JNI-
based systems cannot be used in embedded software and hardware JVMs. In addition, while
the JNI gives relatively complete access to Java from C, the access from Java to C is limited
mostly to writing Java methods in C.

Thus, the JNI does not bring us particularly close to a native JVM port. However, the
JNI is worth mentioning here because it shows the first step in language integration between
Java and non-Java languages. In fact, when a particular language is already implemented
in C, the JNI can be used to provide some rudimentary integration between that particular
language and Java.

11

For example, the Java-Perl Lingo (JPL) used the JNI to provide such access between
Perl and Java. The JPL is part of the core perl distribution and eases the integration of
Java and Perl. As Larry Wall frequently points out, the JPL at least shows that Java’s and
Perl’s semantics are compatible [31]. The JPL is indeed useful to programmers who have
access to both perl and a Java environment on a single operating system. The JPL can be
used to write some Java methods in Perl, instantiate Perl objects in Java, and/or instantiate
Java objects in Perl. To provide these features, the developers of the JPL used the JNI to
interface perl (which is written in C) with the Java environment.

However, such a solution can never be developed into a full Perl port to the JVM. The
JNI is usually not available on JVMs that are embedded in hardware or other software
programs. Thus, while the JPL is a powerful tool for those who use Java and Perl on a
system where perl already runs, it will never allow Perl to run on embedded JVMs.

In addition, the JPL has some overhead. The running process of a JPL program must
have an active instance of libperl.so (the perl shared library) to run the Perl code. In
addition, the process must have an active instance of a JVM to run the Java code. A
native Perl port to the JVM would run faster, since the Perl code would run completely
independently of perl. Also, a full JVM port would enable Perl to take advantage of
advances in the state of the art of JVM optimization technology.

Finally, the JPL really serves a different problem space than a Perl port to the JVM.
The JPL seeks to maximize flexibility of transition between Java code and Perl code. Even
though a full Perl port to the JVM would seek to eventually provide such flexibility, that
is only a small part of the picture. The goal instead is to run nearly any arbitrary Perl
program natively in the JVM environment by generating a valid JVM class file that is the
equivalent to the given Perl program.

This is not to say that the JPL is not useful as we pursue a complete port of Perl to the
JVM. Indeed, the solution discussed in Chapter 5 requires the JPL to run, since Java and
Perl code must call each other.

2.2 Survey of Approaches

Since the JNI is not a clear path to a full JVM port, other methods must be considered.
Traditionally, there have been four ways in which languages are ported to the JVM 1.

The traditional approaches are as follows:

• Implementation of a language interpreter in Java.

• Compilation from the source language to Java source.

• Direct compilation from the source language to JVM bytecode.

1These categories were originally classified in [4], but are extended a bit here.

12

• Mapping of language structures and idioms onto the JVM.

In the subsequent subsections, each of these approaches is considered in detail.

2.2.1 Implementation of a Language Interpreter in Java

For most languages, implementation of a language interpreter in Java is perhaps the most
straight-forward method of porting that language to the JVM. This approach was used by
the Tcl [16] and Python [14] ports. Since there are number of different compilers that can
convert Java source into JVM bytecode, an interpreter written in Java can run easily on the
JVM.

When a program from the source language needs to be run on the JVM, this new inter-
preter must take as input the source program, as well as the input that the source program
is expecting. An eval construct using these two input sets is then invoked, and in that
manner, the source program is run.

This approach has a number of advantages. First, if the source language has a well-written
specification, or is a language with few constructs, based around a single paradigm (e.g., a
relatively pure object oriented or functional paradigm), then implementing an interpreter
for the language is often a simple matter of implementing the specification. Design issues
are often already decided by the specification or by the paradigm, greatly easing the burden
on the implementor.

A second advantage is that real-time, on-the-fly code evaluation (i.e., eval($string))
is always available. The Java program that implements the interpreter simply needs to
instantiate a new instance of the interpreter, and feed it $string as input.

However, this approach has two disadvantages, one of which is particularly problematic
for a Perl port. The first disadvantage is speed. Since hardware devices that have JVMs
on a chip are only a subset of the useful deployments of the JVM, considerations for JVM
implementations in software are important. When a JVM is implemented in software, JVM
bytecodes are typically interpreted by this software. Thus, as Per Bothner notes, “if your
interpreter for language X is written in Java, which is in turn interpreted by a Java VM,
then you get double interpretation overhead” [4]. Such a situation is unacceptable for Perl,
which has always prided itself on speed.

Another disadvantage that might be acceptable for some languages, but is completely
unacceptable for Perl is code divergence. If a language has a well-defined specification that
describes precisely the syntax and semantics of the language, code divergence is not an issue.
An implementation must adhere to the specification. However, it has often been noted in
the Perl community that “the specification is the implementation”. The community cannot
tolerate divergent implementations. Indeed, much work in the mid-1990s was done to stop
the divergence of the Microsoft and Unix-like Perl implementations.

13

While the Perl community has plans to change this approach, by developing a language
specification for newer versions of Perl, this work is still speculative. In addition, a good
port of Perl to the JVM should support older versions as well as newer ones.

Therefore, if this interpreter approach were to be taken for current versions of Perl, it
would require compiling perl, the existing C implementation of Perl, with a C compiler
targeted to JVM. Experimental compilers of this nature do exist [30], but they are far from
ready for production. In addition, such a port of Perl would undoubtedly be slower than
any of the other approaches. Indeed, given the relatively large size of perl, such a port
would most likely be completely inappropriate for JVM implementations embedded in small
hardware devices or those embedded in larger software programs.

Therefore, simply waiting for a C compiler to be targeted to the JVM is not a reasonable
approach for porting Perl to the JVM. Other methods must be investigated and attempted.

2.2.2 Compilation from Source Language to Java

Compilation of the source language into Java source code is a possible approach for porting
to the JVM. As was mentioned above, compilers that target Java source to the JVM are
widely available. If, for every program in the source language, an equivalent program in Java
were constructed automatically, then the source language would be effectively ported to the
JVM.

The only real advantage to this approach is that the porter need not be concerned with
the inner workings of the JVM. This minor advantage does not outweigh the two grave
disadvantages. First, the port becomes immediately susceptible to changes in the Java
language and its accompanying class libraries, which are more subject to change than the
JVM specification. Second, the Java source language is not as expressive as JVM bytecodes.
Although Java source is very close to JVM bytecodes, there are constructs (such as goto)
that exist on the JVM but do not exist in Java [4].

With these disadvantages and only one minor advantage, it is not surprising that there
has yet to be any language successfully ported to the JVM using this method. It should be
noted, however, that one attempt was made to port Perl to the JVM in this manner. This
port worked only for a very small subset of Perl. The designers of this system even note
themselves that “to provide a complete translation would require many Java classes to be
written, possibly making a bytecode-to-bytecode translation more effective” [18]. Despite
that this system does support a subset of Perl, the conventional wisdom in both the Perl and
JVM porting communities is that source language to Java source translation is not feasible
to port more than small subsets of given languages.

14

2.2.3 Direct Compilation to JVM Bytecode

The next approach is perhaps the most traditional one: to provide a compiler that targets
the source language directly to the JVM. This can be done either by writing a compiler
from scratch (as was done for Scheme [5] and (of course) Java), or by retargeting an existing
compiler to the JVM (as was done for Eiffel).

The former method will cause code divergence, which is appropriate for Scheme and
Java, since these languages have detailed written specifications. As has been established,
such code divergence is not reasonable for Perl, at least not at the current time. The later
method of retargeting a compiler to the JVM is reasonable for Perl, yet there is a risk.

As was discussed in Section 1.2.3, a useful feature of a proper JVM port is to permit the
source language to use the JVM to communicate smoothly with other languages. When the
Eiffel compiler was retargeted to the JVM, the port was not made “aware” of the JVM’s
object model. Thus, it has been a difficult road to use Eiffel’s JVM port to integrate Eiffel
and Java, since the compiler treats JVM bytecode as just another assembler syntax—not
as a rich object architecture. Plans to modify the Eiffel port to support integration with
Java exist; however, the design of Perl’s port to the JVM must not inherently contain this
limitation.

2.2.4 Mapping Language Idioms onto the JVM

The final approach is perhaps the most uncommon, and the most limited. This approach
maps each language idiom onto the Java architecture. If all the language features have
semantic equivalents in Java or directly on the JVM, a mapping can be done to allow the
language to run on the JVM. ADA’s port to the JVM relied heavily on this approach [10].

This method, of course, must usually be combined with some Java or JVM code genera-
tion to be completely successful. However, it is worth categorizing this approach separately,
since when used with a retargeted compiler, the problem that the initial Eiffel port encoun-
tered is avoided.

The downside to this approach is that each language idiom must have an equivalent
in Java or on the JVM. If more than a few such idioms do not have equivalents, then
a programmer must construct such idioms, usually by implementing them from scratch in
Java. This is not unreasonable, but it does take time and effort. Therefore, this approach
(when used exclusively) will likely only be successful with languages that are very much like
Java—relatively strongly typed, and primarily object oriented.

2.3 Which Approach for Perl?

Given the various categories of JVM ports, the key question is which method should be used
for Perl. In this work, we describe two approaches that were attempted. Both approaches

15

attempt to leverage the existing perl compiler (which is discussed in detail in Chapter 3).
The first approach was roughly a direct compilation method—retargeting perl to the

JVM via the Jasmin assembler. Chapter 4 discusses this effort, and why it ultimately failed.
The second approach is a somewhat novel approach. A “middle layer” intermediate

representation provided by newer versions of Kawa [5] is used to mitigate the problems
found in the first approach. Chapter 5 discusses this effort.

16

Chapter 3

Internals of perl

Before the specific approaches for porting Perl to the JVM can be discussed, a brief digression
is necessary. To understand the approaches taken in this work, some understanding of the
internals of the canonical Perl implementation, perl, must be understood. This chapter
presents these perl internals and compares them to the JVM.

3.1 perl As a Compiler and Virtual Machine

It is a common misconception that perl is an interpreter for Perl. The misconception arises
from the fact that perl has two components within the same actual binary. First, perl has
a front-end compiler which includes a lexer and parser that analyzes a Perl program and
produces an intermediate representation (IR) of the program, in the form of a syntax tree.
Such an environment is typical of a compiler front-end as discussed in [2].

Second, perl has a back-end, which includes an implementation of the native Perl data
types (such as scalar, array, and hash), as well as the Perl Virtual Machine (PVM). The PVM
can take the IR generated by perl’s front-end, along with the data type implementations,
and evaluate the IR (thus executing the code given by the Perl programmer). Thus, perl
is not an interpreter. Instead, perl is actually a combination of a compiler and a virtual
machine for Perl.

When seen in this fashion, the similarities between the perl environment and the Java
environment are striking. However, there are some key differences.

Those differences are as follows:

• The JVM has a detailed written specification. The PVM is documented primarily only
in the source code for perl itself.

• The JVM has fewer operation codes (OP-codes) than the PVM. Indeed, the PVM has
a separate OP-code for nearly all of the over 200 Perl builtin functions. Overall, there

17

are a 346 different OP-codes in perl [1].

• The JVM has very simple native data types, and relies on standard class libraries to
provide more complex types. The PVM has a number of complex native data types
(e.g., hash, scalar and array).

• Java compilers and JVMs are usually implemented separately. The PVM and the
front-end compiler are tightly coupled inside perl.

These differences are really drawbacks of using perl as a compiler for a new virtual
machine environment. First, the lack of a written specification for the PVM leads to a
tendency for changes to occur in the PVM that are only made aware to core perl developers.
The development model is open, of course, but keeping up with the details of the development
is a big job, regardless.

The sheer size of the PVM makes it somewhat unwieldy. Not only are there 346 OP-codes
but most OP-codes have a number of flags and options. These options and flags change the
semantics of how the OP-code is evaluated. Many times, the only way to truly understand
how a given OP-code works requires tracing through the source code of perl.

Since the source code is available and unencumbered, these problems can be mitigated
simply by reading the source and becoming familiar with the system. However, the tightly
coupled nature of the front-end compiler, its IR and the PVM creates additional problems
that are more difficult to overcome when porting to new virtual machines.

The IR generated by perl’s front-end compiler relies on a number of complex data
structures to represent Perl’s native data types. Since perl has always lived in the same
binary as the PVM, the PVM assumes those data structures are available1. To perform a
direct translation to a new virtual machine using perl’s IR, equivalent data structures must
be developed on that new virtual machine. As it turns out, these data structures constitute
much of the semantics of Perl. Namely, nearly all variable accesses in Perl go through these
data structures. Thus, using the IR to implement a port to the JVM is feasible, but a
challenge.

3.2 The perl Intermediate Representation

While the tight coupling of the PVM and perl’s front-end does cause some problems, there is
still a clearly defined intermediate representation (IR) that is generated by perl’s front-end.
This section discusses that IR.

1There is no special reason that two systems living in the same binary must be tightly coupled. However,
there is a tendency by designers to use what is available in code that is linked within the whole system. The
Java environment, by designing the compiler and the virtual machine as separate entities, never fell victim
to this psychological factor.

18

defined $foo;

Figure 3.1: “Defined” Perl Program Example

The perl IR consists of a parse tree. In the context of perl, this IR is commonly referred
as the “OP-tree”. This OP-tree is an acyclic directed graph representing the flow of the Perl
program. There are twelve different OP classes, and a total of 346 different OPs.

Each OP has a number of flags and options. These flags and options control the behavior
of the OP. Care must be taken when using the IR, as these options and flags can often
change the semantics of the OP-tree evaluation.

Certain types of OPs also have additional fields that might refer to other OPs, or to
internal perl data structures. For example, the LISTOP, which is used to group other OPs
into a list, contains a field for its child OPs. The SVOP, which is used to refer to a scalar
variable, contains a field that points to perl’s internal representation of that scalar variable.

The next two subsections contain examples of Perl programs, and their equivalent OP-
trees.

3.2.1 The “Defined” Example

In this example, we consider a very simple Perl program that tests whether or not a variable
is defined. This simple program can be found in Figure 3.1.

This program tests the scalar variable $foo to see if it is defined. In this example, the
test would evaluate to false, since the defined test occurs before anything has been assigned
to $foo.

Figure 3.2 contains the OP-tree of this program. The top-level OP is the “leave” LISTOP.
This OP is always the final OP evaluated by the PVM, and is the parent of the rest of the
program.

The “enter” OP simply notes that a program has been entered. The “nextstate” OP
indicates that the evaluation will continue on to another statement in the program.

The “defined” OP is UNOP, or unary operator. This means that “defined” takes one
argument. That argument is a child OP of “defined”. That child OP is an SVOP, or
scalar operator. The type of the SVOP is “gvsv”, which means it refers to a global scalar
variable. The data attached to the SVOP is what is called a “typeglob”, an internal perl
data structure that is used to refer to a symbol table entry for foo. That symbol table entry
can in turn access the scalar entity, $foo.

This example is indeed quite trivial. The next section discusses a slightly more complex
example.

19

OP
enter

leave
LISTOP

defined
UNOP

nextstate
COP

*foo

gvsv
SVOP

Figure 3.2: OP-Tree of “Defined” Example

20

$x = 5;
$y = $x + 7;
print "RESULT: $y", "\n";

Figure 3.3: “Add and Print” Perl Program Example

3.2.2 The “Add and Print” Example

Figure 3.3 shows a more complex example. This example has variable use and assignment,
as well as a print statement. The OP-tree diagram of this program is in Figure 3.4.

This example introduces the two BINOPs (or binary OPs)—“sassign” and “concat”. The
“sassign” BINOP is used for variable assignment. Note that there is a dummy “null” UNOP2

above the SVOP that is used to pass extra options to the “gvsv” SVOP. In this case, these
options denote that the results of the “gvsv” OP will be used as an l-value.

Another OP that is introduced in this example is the “pushmark” OP. This OP refers
directly to an operation on the PVM run-time stack. When the PVM evaluates the OP-
tree, the PVM run-time stack is used to hold OP evaluation results as they are built during
evaluation. In this example, the “print” LISTOP expects to use the PVM run-time stack to
keep track of the arguments to be printed.

Thus, the “print” LISTOP first performs a “pushmark” to note where its arguments
begin on the stack. After the PVM has evaluated the other child OPs of “print”, “print”
finds its mark on the stack, and prints all arguments after the mark.

This behavior can be demonstrated by using perl’s debugging command-line options,
-Dts. Figure 3.5 shows this debugging output for the “print” operation. (The mark is
represented in this output by an *. Note, too, that PV and NV refer to the perl internal
string and number types, respectively.)

The figure shows that after the evaluation of “print”, all arguments back to and including
the mark have been consumed (and the side effect of printing those items to the standard
output occurs, of course). “print” leaves a single item on the stack, a scalar value of “true”
(called SV YES internally by perl).

As that SV YES shows, it is not only those OPs that perform a “pushmark” that use the
run-time stack. Most OPs, when evaluated by the PVM, leave some items on the stack. In
fact, one of the purposes of the “nextstate” OP is to clear the stack of unconsumed items.

It should be noted as well that some other OPs, such as “concat”, use the stack for
multiple items, even though they do not perform a “pushmark”. In those cases, the OP
defines a constant number of stack items it will consume. For example, BINOPs like “concat”
always consume exactly two items.

2In other cases, “null” OPs are also inserted, but there presence is not particularly interesting in those
cases, and they are omitted from Figure 3.4 for readability.

21

leave
LISTOP

sassign
BINOP

print
LISTOP

nextstate
COP

OP
enter

pushmark
OP

 concat
BINOP

 "\n"

const
SVOP

sassign
BINOP

 5

const
SVOP

nextstate
COP

 add
BINOP

*x

gvsv
SVOP

 7

const
SVOP

*y

gvsv
SVOP

"RESULT: "

SVOP
const

nextstate
COP

[sub−OP is

UNOP
null

l−value.]

gvsv
SVOP

*x *y

gvsv
SVOP

[sub−OP is

UNOP
null

l−value.]

Figure 3.4: OP-Tree of “Add and Print” Example

22

op pushmark

stack =⇒ *

op const(PV("RESULT: "))

stack =⇒ * PV("RESULT: ")

op gvsv(main::y)

stack =⇒ * PV("RESULT: ") PVNV(12)

op concat

stack =⇒ * PV("RESULT: 12")

op const(PV("\n"))
stack =⇒ * PV("RESULT: 12") PV("\n")
op print

stack =⇒ SV YES

Figure 3.5: Partial Stack Evaluation of “Add and Print” Example

3.3 Accessing the IR via B

The previous example demonstrates how closely tied the perl IR is to the PVM—many OPs
are specifically tuned for operations on the PVM. And, given the other problems discussed
in Section 3.1, it is not possible to simply “map” the PVM onto the JVM in any simple way.
However, thanks to the B module, perl’s existing front-end can be used to leverage some
parts of the IR for a JVM port, even if the PVM and the JVM are not really analogous.

The B module allows programmers to implement their own back-ends separate from the
PVM. The B module provides facilities to examine and manipulate the IR generated by
perl’s front-end. In addition, the B module can be used to examine the internal data
structures used by the both the PVM and the front-end.

On the perl command line, the user interface to the B module is through the O module.
The O module acts primarily as a wrapper, allowing the corresponding B module to be
invoked. Instead of running the “default” perl back-end (i.e., the PVM), the user can use
the O module to choose a completely different back-end. That back-end is implemented by
the corresponding B module, which can be written in Perl or C. ([3] and [15] contain a more
complete discussion of the B and O modules.)

The next chapter discusses the first approach to a JVM port, which made use of the B

module and perl’s IR to compile to the JVM.

23

Chapter 4

First Approach—Direct Compilation

Thanks to perl’s IR and the B module, there is no need to parse Perl, find syntax errors,
nor do any typical front-end compiler work to port Perl to the JVM. The current perl

implementation can basically be retargeted in some way to the JVM.
The first approach sought to use these tools to directly compile from perl’s IR to JVM

assembler. This chapter discusses that first approach in detail, and addresses the reasons
that it ultimately failed.

4.1 Using Jasmin Assembler

The JVM class file format is somewhat complex. Directly generating such a file from a B

module would be tricky. Unfortunately, there is no standard assembler syntax for the JVM,
so there are no tools in the standard Java environment to easily generate JVM class files
directly. Attempting to generate a JVM class from B was a focus of much attention early
in this project. Generating class files from B proved very difficult, given the strict format
of a JVM class file.

However, Brian Jepson proposed that instead of generating the JVM class file directly,
output instead could be generated using the Jasmin assembler [15]. Jasmin assembler [19,
pages 399–409] is a syntax for writing JVM class files that is similar to assembler formats
used for physical architectures. This solution greatly reduced the problem scope, since there
was now an easy way to generate JVM class files from B.

However, there was the concern that the Jasmin assembler format is not standardized; it
is simply one possible format for JVM bytecode assembler. Indeed, other formats do exist
and are in use. Therefore, it was imperative that a JVM port not rely on one particular
assembler syntax.

To alleviate this problem, the concept of JVM “bytecode emitters” was introduced. First,
a virtual base class called B::JVM::Emit was created. All code that must emit Java bytecode

24

my $emit = new B::JVM::Jasmin::Emit("Foo");

$emit->methodStart("main([Ljava/lang/String;)V", "static public");

$emit->dup("main([Ljava/lang/String;)V");

$emit->methodEnd("main([Ljava/lang/String;)V");

Figure 4.1: Example of B::JVM::Emit Interface

uses the interface provided by B::JVM::Emit, and all subclasses of B::JVM::Emit must
provide implementations of B::JVM::Emit’s interface specific to that given assembler syntax.

As an example, consider the code in Figure 4.1. It creates a JVM class called Foo, with
one static public method, main, whose body has a single JVM dup instruction.

If a standard assembler format for the JVM is ever created, one needs only implement
B::JVM::StandardAssembler::Emit as a subclass of B::JVM::Emit, and change the first
line in Figure 4.1 to:

my $emit = new B::JVM::StandardAssembler::Emit("Foo");

Assuming that B::JVM::StandardAssembler::Emit is implemented properly, the rest
of the code will function properly, generating the Foo class as described.

Thus, creation of this abstract base class mitigated the concern that Jasmin assembler
syntax is not standard. Jasmin could be used, via the abstract interface, without worry that
it might be outdated and replaced eventually1.

4.2 Data Type Support

With full access to the perl front-end, the B modules to manipulate the IR, and a code
emitter object (as described in the last section) for JVM bytecode, most of the components
for a Perl to JVM compiler are in place. However, recall that the IR generated by perl

assumes that both a PVM and implementations of Perl’s native data types are available.
To successfully port Perl to the JVM, the data types that Perl considers native must be
available on the JVM.

One approach would be to “map” all of Perl’s data types onto equivalent data types
already available for the JVM. Unfortunately, in most cases, this approach is not possible,
since Perl’s native data types are so unique. For example, at first glance, it might seem
feasible to map Perl’s hash onto an object of type java.util.Hashtable. However, Java’s
hash tables do not understand the concept of tie. Similarly, scalars cannot be mapped onto
java.lang.String, since scalars act like numbers when they are supposed to, and Java
strings do not. The uniqueness and flexibility of Perl’s data types become the headache of

1In the end, this turned out to be a non-issue, as the solution described in Chapter 5 rendered an
assembler-based bytecode emitter unnecessary.

25

class SvBase implements Cloneable {
boolean defined;

SvBase() { undef(); }
boolean isDefined() { return defined; }
void undef() { defined = false; }
// [...]

}

Figure 4.2: Portions of the SvBase Class

the compiler writer who wants to port Perl to an architecture where the native data types
are not so unique and flexible.

Thus, for each data type that the PVM considers “native”, an equivalent class for it must
exist on the JVM. Since the Java language easily compiles to the JVM in an idiomatic way,
these classes are implemented in Java. Each class provides the interface that Perl expects
for the data type, and since the implementation is in Java, the new data type can run on
the JVM.

As an example, consider the portion of the class SvBase seen in Figure 4.2. SvBase

is analogous to the perl’s SvNULL object. SvBase provides a simple interface to a scalar
variable. For example, it provides a function to test if a scalar is defined, and a function
to undefine a scalar. (More complex scalar operations are implemented by subclasses of
SvBase.)

Perl’s data types are thus handled by providing a library of Java classes that are analogous
to those expected by the PVM. These Java classes allow PVM operations, expected by the
perl front-end, to be more easily mapped onto the JVM.

4.3 Putting It Together with B

The final step to achieve the JVM port is to support the OP-codes in the IR. In this area, the
B module is most useful. The B::JVM::Jasmin module that generates the Jasmin assembler
from perl’s IR is written as a subclass of B. It descends the syntax tree provided by the
IR, in a depth-first fashion. For each node in the OP-tree, the module processes that node
using the emitter to generate Jasmin code. The emitted Jasmin code utilizes the various
data type classes to perform the task the OP-code would have performed had it been run
on the PVM.

As an example, Figure 4.3 presents the code from B::JVM::Jasmin that handles the
“gvsv” SVOP. In this code segment, we see part of the subroutine, B::SVOP::JVMJasmin.
The name indicates that it is the code for handling SVOPs for the Jasmin-based JVM port.

26

sub B::SVOP::JVMJasmin {
my $op = shift;

my $name = $op->name();

...

my $curMethod = # ...

...

if ($name eq "gvsv") {
my $stashName = $op->gv->STASH->NAME();

my $gvName = $op->gv->NAME();

$emit->getstatic($curMethod, "Stash/DEF STASH", "LStash;");

$emit->ldc($curMethod, cstring $stashName);

$emit->invokevirtual($curMethod,

"findNamespace(Ljava/lang/String;)LStash;");

$emit->ldc($curMethod, cstring $gvName);

$emit->invokevirtual($curMethod,

"Stash/findGV(Ljava/lang/String;)Linternals/GV;");

$emit->invokevirtual($curMethod, "GV/getScalar()LScalar;");

}
...

}

Figure 4.3: B::JVM::Jasmin Code for handling “gvsv” SVOP

27

The B module identifies that a given OP is an SVOP, and calls the routine. As a user of
B, B::JVM::Jasmin provides the JVMJasmin portion of the name. This name is given on
the command-line via the O module, so the user can indicate that the Jasmin-based JVM
back-end is desired.

The first argument when OP-code subroutines, such as B::SVOP::JVMJasmin, are invoked
is the object referring to the current OP-code. Usually, the name method is called to find
the exact type of the OP-code, and Figure 4.3 reflects this.

However, in Figure 4.3, only the code for handling the “gvsv” is shown. The “gvsv”
OP-code is used when a global scalar variable is mentioned. This OP-code must find the
actual data of the variable by searching for it in the name space. To generate the equivalent
Jasmin code for this OP-code, the three Java classes, Stash, GV, and Scalar, must be used.
These are equivalents to stashes, GVs and SVs on the PVM [1].

If the name of the variable for the given “gvsv” SVOP is, for example, $foo, then the
code in Figure 4.3 generates Jasmin assembler that looks something like this:

getstatic Stash/DEF STASH LStash;

ldc "main"

invokevirtual findNamespace(Ljava/lang/String;)LStash;

ldc "foo"

invokevirtual Stash/findGV(Ljava/lang/String;)Linternals/GV;

invokevirtual GV/getScalar()LScalar;

or, as its (easier to read) Java equivalent2:

Stash.DEF STASH.findNamespace("main").findGV("foo").getScalar();

If you compare this to the process described in [1] of how a stashes work inside perl, it
is easy to see that this is equivalent code for a “gvsv” OP-code (given that the Stash and
GV Java classes do their jobs correctly!).

4.4 The “Defined” Example with B::JVM::Jasmin

This section shows how B::JVM::Jasmin compiles the “defined” example from Figure 3.1.
The Jasmin code emitted by B::JVM::Jasmin for the simple program from Figure 3.1 is as
follows:

2B::JVM::Jasmin does not actually translate to Java. The Java code is provided for didactic purposes
only.

28

.class public main

.super java/lang/Object

.method static public main([Ljava/lang/String;)V

.var 0 is foo LSvBase

new SvBase

dup

astore 0

dup

invokespecial SvBase/<init>()V

invokevirtual SvBase/defined()Z

or, as its (easier to read) Java equivalent3:

class main {
static public void main(String argv[]) {

SvBase foo = new SvBase();

bar.defined();

}
}

Figure 4.4 is a graphical representation of how B::JVM::Jasmin emits the Jasmin code
for the “defined” example. Figure 4.4 is similar to Figure 3.2, but, in addition to the OP-tree,
the new figure shows when code is emitted. The down arrows denote that code is emitted
as the node is entered, and the up arrows denote code is emitted when the node is exited.

4.5 Failure of this Method

This method of Jasmin code generation direct from a B module works well for simple exam-
ples. However, it quickly became unwieldy. Eventually, it was clear that this approach was
not the best possible.

While it is basically straight-forward to add new support for additional OP-codes, the
amount of work can still be large. For example, to add support for basic Perl tied variables,
special Java classes would need to be developed that act much like the data structures
internal to perl. While this can be done by reimplementing in Java what perl already
does, such a task is quite complex, tedious and time-consuming.

In addition, emitting Jasmin assembler for even the most basic operations is tedious.
For example, operations like simple conditionals needed to be carefully hand-coded and

3B::JVM::Jasmin does not actually translate to Java. The Java code is provided for didactic purposes
only.

29

leave
LISTOP

defined
UNOP

nextstate
COP

OP
enter

*foo

gvsv
SVOP

.var 0 is foo SvBase
new SvBase
dup
astore_0
dup
invokespecial SvBase/<init>()V

invokevirtual SvBase/defined()Z

.super java/lang/Object

.method static public main([Ljava/Lang/String;)V

.class public main

Figure 4.4: B::JVM::Jasmin Evaluation of “Defined” Example

30

debugged. In the case of conditional statements, this work took days, and most of the work
was simply finding bugs in the way Jasmin code was emitted. Compiler technology has
really evolved to the point where such tedious work for code generation should not be done
by hand. This fact hinted that the approach described here was flawed.

Yet, the worst problem encountered with this approach, and the one that finally made it
completely clear that B::JVM::Jasmin was on the wrong path, was dealing with bytecode
verification. This problem is exemplified best by the “novel” way B::JVM::Jasmin handled
the PVM run-time stack. It seemed that the JVM operand stack could be used to emulate the
operations of PVM run-time stack—using the JVM stack to hold the “mark” and those values
to be later fed to LISTOPs like “print”. However, when subject to bytecode verification,
JVM code of this nature was rejected, since the verifier could not determine a constant limit
on the stack (i.e., the verifier cannot solve the halting problem).

Quickly, it became clear that this direct compilation was not the best approach. Either
much more of the system would need to be hand-coded in Java, or excessive care would need
to be taken to ensure that no generated code could possibly upset the bytecode verification
process. This issue, coupled with the sheer difficulty in doing such low-level code generation,
led to a search for a new approach. That new approach was quickly discovered, and is
discussed in the next chapter.

31

Chapter 5

Second Approach—Kawa Integration

Parallel to the work described in Chapter 4, Bothner had continued to develop his Kawa
system for Scheme [4, 5]. As he worked, he began to abstract some of the components
of Kawa that were not Scheme-specific, and developed them into an interesting layer of
abstraction. The end result was a high-level, generalized intermediate representation (IR)
that compiled to the JVM.

This new Kawa IR filled a large gap in the JVM porting community. Namely, it provided
an infrastructure to port many languages to the JVM. This chapter discusses how that IR
can be used to facilitate a better, easier and more robust port of Perl to the JVM than those
methods discussed in Chapter 4.

5.1 A New Layer of Abstraction

The JVM is indeed generalized insofar as it provides a low level, object oriented, platform-
independent assembler. However, most compilers today are not written to target some
specific assembler directly. Usually, a higher level IR is used to represent the program. Since
the IR is simpler to work with than the assembler, ports of new languages are easier. For
example, the GNU Compiler Collection, GCC, was one of the first compilers to extensively
use such an IR. GCC now supports six different languages on the front-end, and dozens of
architectures on the back-end [24].

As discussed in Chapter 3, perl does have its own IR. Chapter 4 discussed how this IR
was used to generate Jasmin assembler directly. It was discovered, however, that perl’s IR
simply did not map well onto the JVM.

In hindsight, this is not surprising. The perl IR was not designed, as GCC’s was, to
ease the burden of creating new front-ends and back-ends. In fact, perl’s IR was actually
designed specifically to work with and depend on the PVM. Thus, it makes sense that using
perl’s IR to port to new architectures would be difficult.

32

Given this reality, the next step is to find a way to still leverage the useful perl front-end
IR in a way that will facilitate a port to the JVM. The solution proposed here considers
using a second IR that is specifically designed to function with the JVM. A translator can
then be written that massages perl’s IR into the other IR.

This approach is easier, because an IR designed to be general will have better facilities to
implement various language features. For example, features like lexically-scoped variables,
and anonymous subroutines (i.e., lambda) are common in many languages. If the IR supports
these features, translating from perl’s IR to the new IR will be easier. And, even for
those features that are unique to Perl, a good IR would provide facilities (better than those
provided on the bare JVM) to implement those additional features.

Kawa’s IR can definitely serve as this new IR. Originally designed for Scheme, Kawa’s IR
has been generalized to support basic generic features that are common in many dynamically
typed, very high level languages. In addition, it has extensible parts, too. For example, the
user of the IR can implement a class that controls variable binding lookup. Yet, the IR’s
object oriented interface hides the details of how that variable binding lookup operates
internally. This feature alone can help simplify one of Perl’s most complex features—tied
variables.

5.2 The Kawa IR

The Kawa IR is provided by the Java package, gnu.expr.*. This package, described in [4, 5],
provides classes that represent nodes in a parse tree. Each node in that tree is a subclass of
the abstract base class Expression.

Each Expression has two key methods: eval and compile. The former is used when
the program is run interactively. When invoked, eval evaluates the current expression (and
often subexpressions) in the context of the current run-time environment. The compile

method is used to compile the expression (and often subexpressions) to a JVM class file
for later use.

One of the most important subclasses of Expression is the LambdaExp, which provides
the basic semantics of a lambda expression in Scheme. However, the LambdaExp class is
an abstraction of lambda, and thus does not contain anything specific to Scheme. The
LambdaExp can be used to enclose functions as well as objects, including handling of param-
eters, localized lexically scoped variables and variables internally captured by a closure.

The ModuleExp is a subclass of LambdaExp. A ModuleExp maps onto a JVM class,
and can include declarations of both static and instance variables, and static and instance
methods. When translating perl’s IR to Kawa’s IR, a ModuleExp is used to represent each
Perl package.

33

5.3 The “Add and Print” Example with Kawa

This section shows how the Perl program from Figure 3.3 (the “add and print” example) is
compiled to Kawa’s IR. Figure 5.1 shows a diagram representing how the “add and print”
example is compiled to Kawa’s IR.

The top-level Perl package is compiled to a ModuleExp. Contained by that ModuleExp

are two Declaration objects for the two scalar variables used in the program.
The ModuleExp contains one subexpression, a BeginExp. A BeginExp is used to organize

a set of subexpressions, and evaluate them for their side effects.
One such subexpression is the ApplyExp. This expression is a generalized way to evaluate

a function. The functions can be existing LambdaExps, or, as in this case, a reference to some
known procedure. In this case, we refer to a PrimProcedure object, which simply refers to
a known function that is written in Java. However, an ApplyExp can just as easily refer to
unnamed functions compiled by Kawa, or named functions written in Perl or Scheme. This
flexibility is a great advantage over other methods for compiling non-Java languages to the
JVM.

Another particularly flexible mechanism is variable binding. The SetExp is used to set
a variable to a particular value. Each SetExp refers to some variable. However, the binding
of that variable need not be specified directly. The variable is looked up by Kawa in the
current context. Thus, worrying about how the variable is bound is left up to the IR. The
compiler from perl’s IR to Kawa’s IR need not specifically worry about that issue.

The complement to the SetExp is the RefExp. A RefExp refers back to a variable so
its value can be used as an r-value. It should be noted that while in this example, we are
dealing only with simple scalars, these expressions can be used to solve the issues with Perl’s
tie. Kawa has a binding mechanism, whereby variable declarations can have particular
constraints associated with their use. SetExps and RefExps are evaluated or compiled with
references to these constraint objects. At runtime, the constraint objects are resolved. In
this manner, JVM code can automatically be generated to handle complex variable access
mechanisms, such as exist with Perl’s tie.

34

Declaration

main::$x

Declaration

main::$y

ModuleExp

main

BeginExp

QuoteExp

"RESULT:"
ApplyExp

PrimProcedure

add$2

QuoteExp

5

ApplyExp print$V

PrimProcedure

QuoteExp

7

RefExp

main::$x

SetExp

main::$x SetExp

main:$y

RefExp

main::$y

QuoteExp

"\n"

Figure 5.1: “Add and Print” Example in Kawa’s IR

35

Through this example, Kawa’s flexibility is clear. The direct compilation method dis-
cussed in Chapter 4 failed because it attempted to compile from perl’s IR to a very low level
JVM interface—the Jasmin assembler. The perl IR can be massaged much more easily into
Kawa’s IR, because Kawa provides higher level semantic concepts and an infrastructure for
compilation.

36

Chapter 6

Conclusions and Future Work

Porting Perl to the JVM represents a unique challenge. The complexity of Perl’s native data
types and of parsing Perl cripple most typical methods of compilation for the JVM. This
thesis presented a study of possible approaches for a Perl port to the JVM.

Clearly, it made sense to mitigate the parsing issues by using perl’s existing front-
end. Use of that front-end leveraged the many person-years that went into the canonical
implementation of Perl, while limiting the problem scope to a much more manageable task.

However, using perl’s front-end was not without its own challenges. The first approach
tried, a direct compilation method, ultimately failed. This approach relied too much on
perl’s IR. This approach implicitly assumed that the PVM could be easily mapped onto
the JVM directly. The perl IR proved too inflexible for this method, as it was not designed
to be a generalized IR. Attempting to use it as such quickly took perl’s IR to its limits.
In the case of our JVM port, this meant that far too much new Java code was required to
support even the simplest of features.

In addition, reliance on the JVM to act in the same manner as the PVM proved to be
another problematic assumption. The JVM is not designed to be a perfectly general virtual
architecture. Parts of the JVM, such as the bytecode verifier, rely on assumptions that are
not applicable when the JVM is used in a more general way. This is not necessarily a flaw
in the JVM, but it does indicate that using the JVM in such a general way is not the best
approach.

Fortunately, the Kawa system provides a more generalized method for compiling non-Java
languages to the JVM. Kawa introduces a layer of abstraction that is absolutely necessary
if the JVM is to be used as a general architecture for non-Java languages. Other projects
that port non-Java languages to the JVM would do well to revisit Kawa in its current state,
and perhaps migrate to it. Such migration would not only alleviate problems faced in those
projects, but standardizing on Kawa would also ease the task of integrating the object models
of the various JVM ports. Such integration would bring the community closer to the goals
described in Section 1.2.3.

37

In the specific case of our Perl port, Kawa solved some even more difficult problems. Using
Kawa overcomes the deficiencies inherent in perl’s IR and its tight coupling with the PVM.
By providing a higher-level IR, Kawa eases the reuse of perl’s IR. The minutiae of book-
keeping required when trying to compile perl’s IR directly to JVM bytecode disappears when
Kawa is used. Semantic mapping is the sole focus, and the common details of compilation
are handled internally by Kawa’s compilation process.

The key impact of this work, however, is not only the final conclusion that “Kawa is
the right path for JVM compilation of non-Java languages”. The process of finding that
solution is the greatest contribution here. This work shows the unexpected pitfalls that are
encountered when direct compilation to JVM bytecode is attempted. In addition, this work
exposes the problem of tightly coupling the IR with a particular virtual machine architecture.
It is hoped that the Perl6 effort (which seeks to reimplement perl from the ground up) can
make use of the lesson learned here, so that future versions of perl will ease the burden of
porting to architectures like the JVM.

The most open area for future work is to continue porting more of Perl to the JVM via
Kawa. Currently, only a small subset of Perl is supported, but the path is clear. Kawa’s
infrastructure makes the task of porting Perl to the JVM much more feasible. It is hoped
that more developers will become interested in the project now that this work has laid out
a clear path to the goal. With that in mind, all software developed in conjunction with
this thesis has been released as free software, and contributions from the community have
already begun.

Such work does not only benefit the Perl community, either. Already, the work of porting
Perl to the JVM via Kawa has inspired enhancements to Kawa itself [6]. It is hoped that
continued efforts to port a unique language like Perl via Kawa will help Kawa to become
even more generalized and robust.

As Microsoft’s .NET system looms on the horizon, The Kawa/JVM environment can be
a real competitor to it. Of course, a Kawa/JVM system has the added advantage that it is
completely open and free software, while Microsoft’s .NET will no doubt remain proprietary.
It is hoped that this advantage can carry a Kawa/JVM-based language system, along with
a Perl port to Kawa/JVM, to success for users and programmers alike.

38

Bibliography

[1] Gisle Aas. “Perl Guts Illustrated, Version 0.09”. [Online] Available at
http://gisle.aas.no/perl/illguts/, November 1999.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachusetts, USA, first edition, March 1988.

[3] Malcolm Beattie. “The Perl Compiler”. The Perl Journal, 1(2):34–36, Summer 1996.

[4] Per Bothner. “Kawa–Compiling Dynamic Languages to the Java VM”. In Proceed-
ings of the Usenix 1998 Annual Technical Conference: Invited Talks and FREENIX
Track, pages 225–272, New Orleans, Louisiana, USA, June 1998. Also available at
http://www.bothner.com/~per/papers/.

[5] Per Bothner. “Kawa: Compiling Scheme to Java”. In Proceedings of the 1998
Lisp Users Conference, Berkeley, CA, USA, November 1998. Also available at
http://www.bothner.com/~per/papers/.

[6] Per Bothner. Personal Communication, December 2000.

[7] Per Bothner. “JEmacs: The Java/Scheme-based Emacs”. In Proceed-
ings of the FREENIX Track of the 2000 Usenix Annual Technical Confer-
ence, pages 271–277, San Diego, CA, USA, June 2000. Also available at
http://jemacs.sourceforge.net/Freenix00/Freenix00.html.

[8] Chris Cladingboel. “Hardware Compilation and the Java Virtual Machine”. [Online]
Available at http://www.wadham.ox.ac.uk/~chris/project, July 1998.

[9] Nathan Clement. “Hardware Implementation of the Java Virtual Machine”. [Online]
Available at http://murray.newcastle.edu.au/users/students/1999/c9510422,
November 1999.

[10] Cyrille Comar, Gary Dismukes, and Franco Gasperoni. “Targeting gnat to the Java
Virtual Machine”. In Proceedings of the conference on TRI-Ada ’97, pages 149–161,
1997.

39

http://gisle.aas.no/perl/illguts/
http://gisle.aas.no/perl/illguts/
http://www.bothner.com/~per/papers/
http://www.bothner.com/~per/papers/
http://www.bothner.com/~per/papers/
http://www.bothner.com/~per/papers/
http://jemacs.sourceforge.net/Freenix00/Freenix00.html
http://jemacs.sourceforge.net/Freenix00/Freenix00.html
http://www.wadham.ox.ac.uk/~chris/project
http://www.wadham.ox.ac.uk/~chris/project
http://murray.newcastle.edu.au/users/students/1999/c9510422/
http://murray.newcastle.edu.au/users/students/1999/c9510422/

[11] Stéphane Doyon. “On the Security of Java: The Java Bytecode Verifier”. Master’s
thesis, Université Laval, Sainte-Foy, Québec, Canada, April 1999.

[12] Stéphane Doyon and Mourad Debbabi. “Verifying Object Initialization in the Java Byte-
code Language”. In Proceedings of the 2000 ACM Symposium on Applied Computing,
volume 2, pages 821–830, Como, Italy, March 2000.

[13] Allen Goldberg. “A Specification of Java Loading and Bytecode Verification”. In Pro-
ceedings of the Fifth ACM Conference on Computer and Communications Security,
pages 49–58, San Francisco, CA, USA, November 1998.

[14] Jim Hugunin. JPython. [Online] Available at http://www.jpython.org, October 1999.

[15] Brian Jepson. “Taking Perl to the Java Virtual Machine”. The Perl Journal, 4(4):53–59,
Winter 1999.

[16] Ray Johnson. “Tcl and Java Integration”. Technical report, Sun Microsystems
Laboratory, February 1998. [Online] Available at http://www.scriptics.com/

products/java/tcljava.pdf.

[17] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Mountain View, CA, USA, first edition, 1997.

[18] Raymond Mccrae, Huw Evans, and Ray Welland. “PerlCaffeine: Compiling Perl to
Java”. In Proceedings of the Perl Conference 4.0, pages 127–135, Monterey, CA, USA,
July 2000.

[19] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly and Associates, Se-
bastopol, CA, USA, first edition, March 1997.

[20] Microsoft, Inc. “Microsoft .NET Homepage”. [Online] Available at
http://www.microsoft.com/net/default.asp, December 2000.

[21] Vijaykrishnan Narayanan. “Issues in the Design of a Java Processor Architecture”. PhD
thesis, University of South Florida, 1998.

[22] J. Michael O’Connor and Marc Tremblay. “picoJava-1: The Java Virtual Machine in
Hardware”. IEEE Micro, 17(2):45–53, March/April 1997.

[23] OneEighty Software, Ltd. “Breakthrough Brings Java Capabilities to Eight-
Bit Platforms”. [Online] Press Release Available at http://www.180sw.com/

PDF/GENEVA-8bit-20001214.pdf, December 2000.

40

http://www.jpython.org
http://www.scriptics.com/products/java/tcljava.pdf
http://www.scriptics.com/products/java/tcljava.pdf
http://www.microsoft.com/net/default.asp
http://www.microsoft.com/net/default.asp
http://www.180sw.com/PDF/GENEVA-8bit-20001214.pdf
http://www.180sw.com/PDF/GENEVA-8bit-20001214.pdf

[24] Richard M. Stallman. Using and Porting the GNU Compiler Collection (GCC). Free
Software Foundation, Boston, MA, USA, 2.95 edition, August 2000.

[25] Sun Microsystems, Inc. “picoJava Microprocessor Core”. [Online] Available at
http://www.sun.com/microelectronics/picoJava, October 2000.

[26] Robert Tolksdorf. “Languages for the Java VM”. [Online] Available at
http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html, December 2000.

[27] Nathan Torkington. “What Every Perl Programmer Needs to Know About .NET”.
[Online] Available at http://www.perl.com/pub/2000/12/net.html, December 2000.

[28] Transvirtual Technologies, Inc. “PocketLinux”. [Online] Available at
http://www.pocketlinux.com, December 2000.

[29] Jon Udell. “Does JVM Already Deliver What .NET’s CLR Promises?”. [Online] Avail-
able at http://www.byte.com/column/BYT20001214S0006, December 2000.

[30] Trent Waddington, Cristina Cifuentes, and Mike Van Emmerik. “A Re-
sourceable and Retargetable Binary Translator”. [Online] Available at
http://archive.csee.uq.edu.au/~csmweb/uqbt.html#gcc-jvm, December 1999.

[31] Larry Wall. Personal Communication, August 1998.

41

http://www.sun.com/microelectronics/picoJava/
http://www.sun.com/microelectronics/picoJava/
http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html
http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html
http://www.perl.com/pub/2000/12/net.html
http://www.pocketlinux.com/
http://www.pocketlinux.com/
http://www.byte.com/column/BYT20001214S0006
http://www.byte.com/column/BYT20001214S0006
http://archive.csee.uq.edu.au/~csmweb/uqbt.html#gcc-jvm
http://archive.csee.uq.edu.au/~csmweb/uqbt.html#gcc-jvm

	Introduction
	The Java Virtual Machine
	Purpose of the JVM
	The JVM Class File
	Code Segments in the JVM
	Bytecode Verification and Security

	Why Port Non-Java Languages to the JVM?
	Hardware JVMs
	Embedded Software JVMs
	Language Integration via the JVM
	The .NET Factor

	Porting Challenges
	General Challenges
	Perl-Specific Challenges

	Possible Approaches
	JNI
	Survey of Approaches
	Implementation of a Language Interpreter in Java
	Compilation from Source Language to Java
	Direct Compilation to JVM Bytecode
	Mapping Language Idioms onto the JVM

	Which Approach for Perl?

	Internals of PD1OT1cmrcmrmmnnperl
	PD1OT1cmrcmrmmnnperl As a Compiler and Virtual Machine
	The PD1OT1cmrcmrmmnnperl Intermediate Representation
	The ``Defined'' Example
	The ``Add and Print'' Example

	Accessing the IR via PD1OT1cmrcmrmmnnB

	First Approach---Direct Compilation
	Using Jasmin Assembler
	Data Type Support
	Putting It Together with PD1OT1cmrcmrmmnnB
	The ``Defined'' Example with PD1OT1cmrcmrmmnn0.98 0.13 0 0.43 kB::JVM::Jasmin0 0 0 1 k
	Failure of this Method

	Second Approach---Kawa Integration
	A New Layer of Abstraction
	The Kawa IR
	The ``Add and Print'' Example with Kawa

	Conclusions and Future Work

