
AN ENABLING OPTIMIZATION FOR C++ VIRTUAL

FUNCTIONS

Bradley M. Kuhn∗

bkuhn@acm.org
David W. Binkley∗

binkley@cs.loyola.edu

Computer Science Department
Loyola College in Maryland

4501 N. Charles Street
Baltimore, Maryland 21210-2699

Keywords Virtual Functions, Optimization, Dynamic
Binding

ABSTRACT

Gaining the code re-use advantages of object oriented
programming requires dynamic function binding, which
allows a new subclass to override a function of a super-
class. Dynamic binding is obtained in C++ through the
use of virtual functions. Unfortunately, virtual functions
have two negative impacts on performance. First, they
are traditionally compiled into indirect call instructions,
which take longer to execute than direct call instructions.
Second, it is difficult for the compiler to perform optimiza-
tion since summary information from called procedures is
hard or even impossible to obtain. The net effect is that
C++ programmers avoid the use of virtual functions.

We present a new optimization that (1) removes the
indirect function calls used for virtual functions, (2) en-
ables other compiler optimizations such as inlining and
constant propagation, and (3) requires no extensive data-
flow analysis or profile information and thus is easily im-
plemented in an existing compiler. We include experi-
mental evidence that this optimization reduces execution
time. Not surprisingly, the greatest benefits are obtained
with programs that include a high proportion of virtual
functions calls.

∗supported in part by the National Science Foundation un-
der grant CCR-9411861

1 INTRODUCTION

Compiler optimizations that attempt to reduce program
execution time have become increasingly more aggressive.
Modern compilers perform a variety of intraprocedural
and interprocedural optimizations (e.g., branch predic-
tion, code motion, constant propagation, and subprogram
inlining). To safely apply these optimizations requires
summary information from called procedures; thus, a call
to a function that cannot be resolved at compile time
will invalidate or severely restrict optimization. C++ vir-
tual functions produce such calls. This is unfortunate, as
many functions in object-oriented programs are small and
therefore excellent candidates for inlining. Because opti-
mization is hampered by virtual functions, programmers
hesitate to use them.

Reducing the cost of virtual functions is becoming in-
creasingly important as programmers become more famil-
iar with object-oriented design and programming tech-
niques and, consequently, include more virtual functions
in their code. For example, recent versions of the Inter-
views framework use more virtual functions and virtual
function calls that a previous version [9].

This paper describes an optimization that improves the
performance of C++ programs that contain virtual func-
tions. The optimization is an enabling optimization: it
attempts to enable other optimizations by replacing indi-
rect function calls with direct functions calls. This allows
existing compiler optimizations to be more effective. For
example, enabling inlining can increase basic block size,
which makes it easier to keep multiple pipelined functional
units busy in today’s modern super-scalar pipelined ar-
chitectures such as the Pentium and powerPC. Finally,
unlike other optimizations for the same problem [3, 10],

our optimization requires no extensive data-flow analysis
or profile information.

The next section describes our optimization. Following
this, Section 3 presents performance data obtained by ap-
plying our optimization to a collection of C++ programs.
Next, Section 4 describes related work, and finally, Sec-
tion 5 provides a summary of our results.

2 ENABLING OPTIMIZATION

This section describes our enabling optimization, dis-
cusses the optimization’s implementation, and provides
examples showing how it interacts with (enables) inlining
and constant propagation. The code shown in Figure 1 is
used in this section to illustrate various aspects of the op-
timization. Note that the virtual function call in function
process() does not call the version of bar() declared
in class Base as would be the case with static binding.
Rather, the function called is determined at runtime by
the type of the object pointed to by x, which may be
Base or a subclass of Base. For more details on virtual
functions see [6].

2.1 The Enabling Optimization

Our optimization replaces each dynamic function call
with a switch statement and a set of static function calls.
Since existing compilers can analyze static functions calls,
the compiler is in a better position to perform other opti-
mizations after our optimization is applied. The replace-
ment has the following steps:

Step 1. Compute the class hierarchy to determine the set
of functions that each virtual function call may
invoke.

Step 2. Replace each virtual function call with a switch
statement and a set of static function calls. The
switch statement uses the type of the receiving
object to determine which function is called. The
set of static calls used in the switch statement is
determined by the following three rules:

Rule 1. Based on the declared type of a pointer in
C++, the set of functions that may be in-
voked by a virtual function call-site is lim-
ited. For example, consider a virtual func-
tion call to function f made though a pointer
to class C. This call may result only in a call
to the version of f declared in class C or any
class derived from C.

Rule 2. Classes that call the same virtual function
are consolidated. For example, if B and C

both derive from A, and B and C do not im-
plement their own version of A::f, then A, B,
and C all call A::f. Putting all three classes
into one branch of the case statement short-
ens the code, and makes the compiler’s jump
table smaller.

Rule 3. Any class that contains pure virtual func-
tions can be eliminated from the switch
statement. C++ forbids the creation of ob-
jects of a class that contains a pure virtual
function; thus, there will never be a call to
a function in such a class.

It is possible that, after applying these rules, only a single
case remains. If so, we replace the switch statement with
a single static call.

Example. Figure 2 shows the transformed functions
Base::bar(), Sub1::bar(), and process() from Fig-
ure 1. Using Rule 2, the cases for Base and Sub2 in
function process() are consolidated because Sub2 does
not implement its own version of bar(). Also, since Sub1

has no subclasses, Rule 1 leaves a case statement with
only one arm. After further optimization, this becomes
the static call sub1::foo().

Like many interprocedural optimizations, ours is most
effective when the entire source is analyzed at one time.
Complete source allows the optimization to obtain com-
plete information about class hierarchies and the use of
virtual functions. It is possible to optimize procedures
compiled separately, with some loss in the effectiveness.
It is also possible to perform the optimization at link time;
however, some local optimizations, such as constant prop-
agation, that we hope to enable would be missed. An al-
ternative is the use of a programming environment that
incrementally computes summary information for large
systems (often as a background task); thus, reducing the
need to examine the entire program on each compile with-
out sacrificing the effectiveness of the optimization. Such
an environment for SELF programs is described in [8].

2.2 Implementation

The optimization is presently implemented as a source-
to-source transformation that essentially applies the steps
and rules given above. The three rules are currently im-
plemented by hand. Implementing the optimization as a
source-to-source transformation was intentional; it allows
us to examine the resulting source code, which has led
to several improvements in the three filtering rules. An
internal (to the compiler) implementation should produce
more efficient code and thus slightly better performance
results.

class Base { class Sub1 : public Base {

protected: public:

int val; virtual foo() { val = 2; };

public: inc() { val++; };

virtual foo() { val = 1; }; virtual bar();

virtual bar(); };

};

Sub1::bar() {

Base::bar() { inc();

foo(); foo();

printf("%d\n", val); printf("%d\n", val);

} }

void process(Base * x) { class Sub2 : public Base {

.... public:

x->bar(); virtual foo() { val = 3; };

.... }

}

Figure 1: A C++ Class Hierarchy

The only interesting part in the construction of the
switch statements is the implementation of the function
typeof. To implement typeof, each class is assigned a
unique type code. This involves adding a new integer at-
tribute, type-of, to each class. Class constructors assign
the class’ type code to this attribute when objects are cre-
ated. The function typeof() simply inspects it to deter-
mine the type of an object. The algorithm requires only
that each class have a unique type code; consequently,
multiple inheritance poses no additional difficulties. As
illustrated below, constant propagation of this attribute
is one of the optimizations we hope to enable.

The implementation requires two modifications to han-
dle separate compilation. First, to ensure that the same
type-of attribute is assigned to a class when it appears
in two different modules, the translator maintains a map-
ping from class names to type-of attributes. Second,
when the complete class hierarchy is not available, a de-
fault case is added to each switch statement. The default
case uses the unmodified virtual function call. For exam-
ple, if the entire source were not available, the optimized
switch statement for Base::bar() from Figure 2 would
be the following:

switch(typeof(this)) {

case Base:

Base::foo(); break;

case Sub1:

Sub1::foo(); break;

case Sub2:

Sub2::foo(); break;

default:

this->foo(); break;

// ‘this->’ is optional

}

Adding a default case restricts existing optimizations, but
allows incremental program development. As with any in-
terprocedural optimization the quality of the optimization
improves when the entire source is available. Once devel-
opment is complete, the entire program can be compiled
without need for the default cases.

2.3 Examples

Our optimization increases the possibilities for in-
lining by turning dynamic function calls into static
ones. This allows the compiler to match each call-

Base::bar() { Sub1::bar() {

switch(typeof(this)) { Sub1::foo();

case Base: inc();

Base::foo(); break; printf("%d\n", val);

case Sub1: }

Sub1::foo(); break;

case Sub2:

Sub2::foo(); break;

}

printf("%d\n", val);

}

void process(Base * x) {

...

switch(typeof(x)) {

case Base:

case Sub2:

x->Base::bar(); break;

case Sub1:

x->Sub1::bar(); break;

}

...

}

Figure 2: Code from Figure 1 After Optimization

site with a single (static) procedure. For exam-
ple, inlining has the following affect on Base::bar():

Base::bar() {

switch(typeof(this)) {

case Base:

val = 1; break;

case Sub1:

val = 2; break;

case Sub2:

val = 3; break;

}

printf("%d\n", val);

}

Since the resulting code for bar() is short, it is a candi-
date to be inlined into other functions such as process().

The inlining we enable allows the compiler to perform
other optimizations such as code motion. For example,
Figure 3 shows Pentium assembler output generated by
gnu C++ for geqn (geqn and gnu C++ are discussed in
Section 3). Notice that in the second column of the figure,
the instructions “pushl $0” and “pushl %esi” are moved
from each case to just before the “jmp *L963(,%eax,4)”
instruction.

In addition to inlining, our optimization enables con-
stant propagation by providing opportunities for both in-
terprocedural and intraprocedural constant propagation.
In particular, we hope to enable the propagation of class
types. We illustrate this with two examples. First, sup-
pose that the code in Figure 4a is added to the program
in Figure 1. The result of our optimization and inlining
on this code is shown in Figure 4b. The type of s1 can
be propagated to the switch statement. For this exam-
ple, s1’s type is a constant as it has no derived classes.
(In general, knowing a type allows the number of cases
to be pruned.) In the resulting code, shown Figure 4c,
our optimization, inlining, and constant propagation have
combined to transform a dynamic call into a static call.

As a second example, consider inlining the two calls
to bar() in function process() shown in Figure 2. Be-
cause our optimization introduces switch statements into
bar(), the resulting code contains nested switch state-
ments. Within each case of the outer switch statement,
the typeof(x) is constant. Constant propagation of this
value allows the nested switch statements to be flattened;
after inlining the calls on foo(), and performing code mo-
tion, which moves the call to printf, process() becomes

Before Code Motion After Code Motion

... ...

movl (%esi),%eax movl (%esi),%eax

pushl $0

pushl %esi

jmp *L963(,%eax,4) jmp *L963(,%eax,4)

L963: L963:

... jump table jump table ...

L932: L932:

pushl $0 call _check_tabs__9delim_boxi

pushl %esi jmp L1048

call _check_tabs__9delim_boxi L933:

jmp L1048 call _check_tabs__9limit_boxi

L933: jmp L1048

pushl $0 L934:

pushl %esi call _check_tabs__8list_boxi

call _check_tabs__9limit_boxi jmp L1048

jmp L1048 ...

L934:

pushl $0

pushl %esi

call _check_tabs__8list_boxi

jmp L1048

...

Figure 3: Enabling Code Motion

{ { {
Sub1 *s1; Sub1 *s1; Sub1 *s1;

...

process(s1); switch(typeof(s1)) { s1->Sub1::bar();

} case Base: }
s1->Base::bar(); break;

case Sub1:

s1->Sub1::bar(); break;

case Sub2:

s1->Sub2::bar(); break;

}
}

(a) (b) (c)

Figure 4: Enabling Constant Propagation

void process(Base * x) {

...

switch(typeof(x)) {

case Base:

val = 1; break;

case Sub1:

val = 2;

val++; break;

case Sub2:

val = 3; break;

}

printf("%d\n", val);

...

}

Further constant propagation within the case for Sub1

allows the cases for Sub1 and Sub2 to be combined.

3 EXPERIMENTAL DATA

This section reports our optimization’s effect on code size
and execution time. We applied our optimization to the
C++ programs listed in Table 1. The original and opti-
mized programs were each complied on two machines: a
DECStation 5000 with a MIPS R3000 33Mhz processor
running Ultrix 4.2A (the DEC machine), and a Gateway
2000 with a Pentium 90Mhz processor running Linux 1.0.9
(the Intel machine). Each program was compiled with
gnu’s C++ compiler (version 2.3.1 on the DEC machine
and version 2.5.8 on the Intel machine) using the -O3

optimization level1, which does (limited) interprocedural
optimization, (limited) inlining, and substantial intrapro-
cedural optimization.

The standard Unix time utility was used to collect the
number of CPU seconds used by each program. Each run
was done when the machine was unloaded, so it received
an average of 99.9% of the CPU time. As a result, elapse
time and CPU time were virtually identical.

The choice of execution time—a direct measure of
performance—rather than an indirect measure of perfor-
mance such as instruction count is intentional.2 Pipeline
effects, cache effects, and the like impact the average num-
ber of cycles-per-instruction, which, in turn, impact the
computed execution time [7]. This occurs in our last ex-
ample where the computed execution times before and

1The amount of interprocedural optimization actually per-
formed by gcc on the Intel machine is suspect since the -O2

optimization level produced the same object code as the -O3

optimization level for each of our test programs.
2Execution time can be computed as the product of instruc-

tion count, average cycles-per-instruction, and cycle-time.

after our optimization are nearly identical while the ob-
served execution times are not.

Each program was run thirty times at random physi-
cal memory locations to account for cache effects (see [2]
for a description of why this is necessary and the pit-
falls associated with not accounting for memory location
induced cache effects when timing programs on modern
architectures). We report in Table 2 the average times
for the thirty runs including the margin of error and
the object code size before and after optimization. Note
that the percentage growth in the resulting binary files
(which include library code) was considerably less: the
first two programs showed essentially zero growth, while
geqn showed about 50% growth. We now discuss each
program in more detail.

The city simulation simulates traffic flow on the roads
of a city. The program has only one virtual function and
was chosen to illustrate the effects on programs that con-
tain very few virtual functions. On the Intel machine,
our optimization caused about a 4% decrease in execution
time and a nominal 1% increase in object code size. On
the DEC machine, the optimization made only a nominal
difference in the execution time. However, it is interesting
to note that it decreased the object code size. This pro-
vides indirect evidence that our optimization is enabling
other optimizations.

The employee program, based on code from [5], has a
high proportion of virtual functions and virtual function
calls; it was chosen to provide expected results for pro-
grams that use virtual functions heavily. The program
has a class hierarchy of eight classes and virtual functions
that (1) print the employee’s data (name, current wages,
etc.), (2) report the employee’s earnings for the current
week, (3) give the employee a raise, and (4) reset the em-
ployee for a new week. Each type of worker implements
these functions differently.

We created a test input file with 1000 employees (200 of
each kind), and then iterated for 300 weeks, printing the
data and the earnings for each employee each week and
giving each employee a raise every ten weeks. For this
example our results were very promising. On the Intel
machine, we achieved an almost 4% decrease in execu-
tion time with only a 10% increase in code size. On the
DEC machine, we achieved slightly over 4% decrease in
execution time with a similar 10% increase in code size.

Finally, geqn is the equation formatter distributed with
gnu’s groff text formatting package. It was chosen for
its size and to give results for a large “real world” pro-
gram. The code contains 6400 source lines of which 400
are virtual function calls. Geqn was written with a single
class (called box) from which its other seventeen classes
are derived. Class box declares fourteen virtual functions

Program Description

city simulation A toy example that simulates cars, trucks, roads, and stop lights.

employee database An example with different kinds of workers (i.e., hourly, salary, by-piece, . . .)

geqn The equation formatter from the Groff text formatting package.

Table 1: Descriptions of Programs Used for Data Collection

Size Time

Program Unopt Optimized Change Unoptimized Optimized Change

Intel:
city simulation 12618 12762 1.14% 9.650 ± 0.067 9.235 ± 0.074 -4.29%
employee 7867 8715 10.78% 95.500 ± 2.706 90.978 ± 1.268 -4.74%
geqn 132331 264739 100.06% 51.265 ± 0.170 52.610 ± 0.156 2.62%

Dec:
city simulation 25348 24052 -5.11% 41.865 ± 0.874 41.621 ± 0.766 -0.58%
employee 21852 24056 10.09% 295.613 ± 11.606 282.953 ± 13.364 -4.28%
geqn 302868 586416 93.62% 101.884 ± 0.162 85.878 ± 0.248 -15.71%

Size represents object code size in bytes. Time represents CPU time in seconds.

Table 2: Data Obtained with gnu C++’s optimizer enabled -O3

(on average only 7 are overridden). This class hierar-
chy leads to very large inlined functions and consequently
large growth in code size. Better object-oriented analysis
and design could lead to better class organization, and
this explosive code size increase should be averted.

We used a large (3.4 MB) input file to obtain our data.
For the Intel machine, our optimization provided no help.
In contrast, on the DEC machine, we obtained a signif-
icant improvement (15%). The explanation lies in the
cache sizes on the two machines. The Pentium proces-
sor in the Intel machine has separate 2-way associative
8K code and data caches. In the first two test programs,
the size of the optimized program was small enough that
cache conflicts were minimal. With geqn, the large code
size leads to excessive cache misses; thus, leading to an
increase in execution time. The MIPS processor in the
DEC machine has a larger 64K cache. Thus, the op-
timized version of geqn did not encounter a restrictive
number of cache misses.

The experimental results shown in Table 2 represent a
promising step towards the efficient compilation of C++
programs containing virtual functions. Since our opti-
mization enables inlining, we expected a code size in-
crease. This was not a problem except for the largest
program running on the Intel machine, which has the
smallest cache. While execution time reduction was not
universal, the employee program with its high percentage

of virtual function calls showed a consistent performance
improvement. Improved compiler optimization, for ex-
ample interprocedural constant propagation (of types),
should improve these results.

4 RELATED WORK

Reducing the cost of indirect function calls generated by a
C++ compiler is addressed by Calder and Grunwald [3],
and Pande and Ryder [10]. Similar optimization goals
have been studied for the languages SELF [8] and Ce-
cil [4]. In contrast to our work, which attempts to reuse
optimizations already implemented as part of the com-
piler, previous techniques perform new analyses. The
C++ techniques are complimentary. In particular, the
technique of Pande and Ryder may be useful in providing
heuristics that estimate the best approach for optimizing
a given virtual function call.

Calder and Grunwald investigated using branch predic-
tion to reduce the cost of indirect function calls. Branch
prediction attempts to predict the direction taken by a
branch instruction based on previous executions of the
same branch instruction. This optimization can be done
in software [1] or in hardware [7]. Calder and Grunwald
focus on two techniques: the first is a 2-bit branch tar-
get buffer (a small cache which records the direction that
the branch last took). The second uses static profile-

driven prediction, which stores information on the direc-
tions that branches took in a previous execution of the
program. In subsequent compilations this profile infor-
mation is used to predict branch directions. Their results
indicate that the first method tends to be very expensive
while the second holds some promise.

Pande and Ryder investigated type determination at
the call site to statically choose the correct virtual func-
tion [10]. Their algorithm attempts to find the type of
an object (class instance) at each virtual function call
site. The algorithm, based on an interprocedural con-
trol flow graph, traces pointer variables and type informa-
tion through the graph and attempts to match up static
type information with pointer variables. If the system can
make a definite match between a pointer and its type, the
virtual functions called using the pointer can be statically
determined. Pande and Ryder are currently gathering
data from their implementation to determine its practi-
cality. In contrast, our optimization hopes to enable ex-
isting constant propagation (of class types) to determine
essentially the same information without requiring a sep-
arate optimization.

Hölzle describes several techniques for improving the
efficiency of virtual-function lookups3 in SELF: a dy-
namically typed object-oriented programming language
in which every operation (including assignment) involves
a virtual-function lookup [8]. Hölzle’s techniques include
an expandable per-call-site cache that is updated on the
fly and a runtime system that dynamically compiles code
similar to the code described in Section 2. These tech-
niques work well for SELF programs because executing
virtual-function lookups is an expensive operation in a
dynamically typed language, where standard dispatch ta-
bles, used in statically typed languages, cannot be em-
ployed. Hölzle is able to bring the performance of SELF
programs to within a factor of two of the comparable C++
program. Unfortunately, many of these techniques are too
costly to be applied in a statically typed language such as
C++, where dispatch tables already provide an efficient
implementation.

Dean et al. describe a profile driven system for special-
izing virtual function calls in Cecil programs [4]. Compar-
ison of run-time improvements are difficult as they apply
to different languages. Dean et al. state that they are cur-
rently working on a C++ implementation, but presently
have no data. In comparison with our work, they ap-
pear to get less code size expansion at the cost of using
run-time profile information. This information is used to
selectively specialize heavily used virtual functions while
ignoring (not creating a copy of the function for) sel-

3We use the C++ terminology in this paper rather than
introduce the corresponding SELF terminology.

dom used functions. Our approach lacks such data and
therefore cannot make such decisions. The cost for this
improvement is an increase in compiler complexity and
compile time.

5 SUMMARY

This paper has presented a low overhead enabling opti-
mization for C++ programs that contain virtual func-
tions. This optimization replaces each dynamic function
call with a switch statement and a collection of static
function calls. Most compilers are better able to analyze
programs with static function calls; thus, our optimiza-
tion enables other optimizations.

Our experimental data are promising for a prototype
implementation. We obtained a consistent performance
improvement except on the largest program running on
the machine with the smallest cache. The numbers for
the employee example, with its high percentage of virtual
function calls, are particularly encouraging. We would
expect these numbers to improve if our optimization was
integrated into a compiler, rather than being implemented
as a source-to-source transformation.

References

[1] T. Ball and J. R. Larus. “Branch prediction for
free”. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementa-
tion, ACM SIGPLAN Notices, pages 300–13, New
York, NY, USA, June 1993. Association for Com-
puting Machinery.

[2] D. W. Binkley and Bradley M. Kuhn. “Execution
timing: some experience and advice”. Submitted to
;login: The Usenix Association Newsletter, 1995.

[3] Brad Calder and Dirk Grunwald. “Reducing indi-
rect function call overhead in C++ programs”. In
Proceedings of the Twenty First Annual Symposium
on Principles of Programming Languages, Portland,
Oregon, USA, January 1994. Association for Com-
puting Machinery.

[4] J. Dean, C. Chambers, and D. Grove. “Selective spe-
cilization for object-oriented languages”. In Proceed-
ings of the SIGPLAN Conference on Programming
Language Design and Implementation, ACM SIG-
PLAN Notices, pages 93–102, New York, NY, USA,
June 1995. Association for Computing Machinery.

[5] H. M. Deitel and P. J. Deitel. C++ how to program,
chapter 10, pages 531–540. Prentice Hall, Englewood
Cliffs, NJ, USA, 1994.

[6] N Graham. Learning C++. Mc Graw Hill, New
York, NY, USA, 1991.

[7] J. L. Hennessy and D. A. Patterson. Computer archi-
tecture: a quantitative approach. Morgan Kaufmann
Hall, San Mateo, CA, USA, 1990.

[8] U. Hölzle. “Adaptive optimization for SELF: rec-
onciling high performance with explotatory progrm-
ming”. PhD thesis, Stanford University, 1994.

[9] M. Linton, J. Vlissides, and P. Calder. “Composing
user interfaces with interviews”. IEEE Computer,
22(2):8–22, Feburary 1989.

[10] Hemant D. Pande and Barbara G. Ryder. “Static
type determination in C++”. In Proc. Sixth C++
Technical Conference, Cambridge, MA, USA, April
1994. Usenix Association.

Bradley M. Kuhn graduated from the Computer Sci-
ence department at Loyola College in Maryland in May
of 1995. He is currently working as a software consultant
in Baltimore, Maryland.

David Binkley is an Assistant Professor of computer
science at Loyola College in Baltimore Maryland where he
has been a member of the faulty since 1991. In the Spring
of 1992 he join the National Institute of Standards and
Technology (NIST) as a visiting faculty researcher. His
research interests include compiler backends, currently
supported by NSF, software maintenance cost reduction
tools, and software issues in high integrity software sys-
tem assurance.

