
Crozzle: an NP-Complete Problem

David W. Binkley∗ Bradley M. Kuhn
binkley@cs.loyola.edu bkuhn@acm.org

Computer Science Department
Loyola College

4501 N. Charles Street
Baltimore, Maryland 21210-2699

KEYWORDS
Crozzle, NP-complete, complexity

ABSTRACT
At the 1996 Symposium on Applied Computing, it was

argued that the R-by-C Crozzle problem was NP-Hard,

but not in NP. The original Crozzle problem is a word

puzzle that appears, with a cash reward for the highest

score, in The Australian Women’s Weekly. The R-by-C

Crozzle problem generalizes the original. We argue that

both problems are, in fact, NP-Complete. This follows

from the reduction of exact 3-set cover to R-by-C Crozzle

and the demonstration of a non-deterministic polynomial

time algorithm for solving an arbitrary instance of the

R-by-C Crozzle problem. A Java implementation of this

algorithm is also considered.

∗supported in part by National Science Foundation grant
CCR-9411861

1 INTRODUCTION

The R-by-C Crozzle problem, introduced at the 1996

ACM Symposium on Applied Computing [2], is a gener-

alization of the Crozzle problem found in The Australian

Women’s Weekly. A Crozzle is a word puzzle played on a

10x15 grid. Words from a supplied list are placed on the

grid subject to the following rules:

1. Not all of the words need to be placed.

2. All placed words must fit completely on the grid.

3. The intersection of two words must be at a shared

letter.

4. No two words may be adjacent (unless the adjacent

parts are covered by Rule 3) or placed end-to-end.

5. The words must form a single connected unit.

A Crozzle is scored as follows: 10 points for each word

placed plus points for each letter that appears at the in-

tersection of two words. Letters have the following point

values:

a,b,c,d,e,f 2 s,t,u,v,w,x 16
g,h,i,j,k,l 4 y 32
m,n,o,p,q,r 8 z 64

.....d.........a.....

.....e.m.a.....s.....

.....d.o.s.....s.....

.....u.v.s.....e.....

....active.....r.m...

.....t.e.r.....deduction..

.....i...t.....v...

.....o.........i...

.....n.........active...

...............

score 48 score 66

Figure 1: Two solutions (one with a high score, one
with a low score) for a Crozzle with input words
active, assert, movie, deduction. (The symbol
‘.’ is used to represent a blank.)

Figure 1 shows two solutions to a simple Crozzle. Algo-

rithms for automatically finding good solutions to Croz-

zles have appeared in the literature [5, 3].

The R-by-C Crozzle problem, introduced by Gower and

Wilkerson to study the complexity of the original, gener-

alizes the Crozzle problem as follows: in addition to a list

of words, an instance of the R-by-C Crozzle problem has

as input R and C, the number of rows and columns in

the grid. Thus the original Crozzle problem is R-by-C

Crozzle with R = 15 and C = 10.

Gower and Wilkerson argue that R-by-C Crozzle is NP-

Hard, but not in NP. Unfortunately this says nothing

about the complexity of the original problem as it is pos-

sible that restricting R to 15 and C to 10 would place it

in NP. Section 2 demonstrates that R-by-C Crozzle is in

fact in NP and thus an NP-Complete problem. This im-

plies that the original (more restrictive) Crozzle problem

is also NP-Complete.

One technical note: the words supplied as part of a

Crozzle are normally English words. There are a finite

number of English words; thus, one could, in theory, pre-

compute all possible Crozzle solutions giving a constant

time bound to the problem. To study its complexity, we

generalize the input to include arbitrary words taken from

some finite alphabet.

2 R-BY-C CROZZLE IS
NP-COMPLETE

To prove that a problem X is NP-Complete it is suffi-

cient to show that (1) X is NP-hard and (2) X is in

NP [4]. Problem X is NP-hard if there is a determinis-

tic polynomial-time reduction from some problem in NP

to X. Since reductions compose, this implies that every

problem in NP can be reduced to X. Problem X is in NP

if all instances of X can be solved in non-deterministic

polynomial time.

Gower and Wilkerson argue that R-by-C Crozzle is NP-

hard, but not in NP. They prove R-by-C Crozzle is NP-

hard by reducing the exact 3-set cover problem to the R-

by-C Crozzle problem. The exact 3-set cover problem is

defined as follows: For a set S and a set F , a collection of

sets each having three elements from S, a solution to the

exact 3-set cover problem is a subset of F where
⋃

F = S

and each member of S appears in exactly one element of

F [1].

theorem 1. [2]. Exact Cover by 3-sets reduces to

R-by-C Crozzle.

Gower and Wilkerson also argue that R-by-C Crozzle

is not in NP because

“the minimum amount of work required is an

examination of each square (i.e., on the order

R×C). The number of steps is dependent upon

the values of R and C rather than the size of the

inputs. Since there is no relationship between

R×C and the number (n) of words in the list,

there cannot be a polynomial-time algorithms

to check possible solutions for all values of R

and C, and n. Therefore R-by-C Crozzle is not

in NP.”

We argue that R-by-C Crozzle is in fact in NP by show-

ing that the number of steps taken to find the highest

scoring solution is dependent on the size of the input and

not on R and C. Recall that the words placed on the

grid must form an interconnected unit. A bound is found

not in the number of words, but in the lengths of the

words. Let length be the sum of the lengths of the in-

put words. Neither the width nor the height of the words

placed on the grid can exceed length. Thus at most a

length2 portion of the R × C grid need by considered1.

This relationship is used in the following theorem.

theorem 2. R-by-C Crozzle is NP-complete.

proof. Theorem 1 proves the R-by-C Crozzle is NP-

hard. What remains is to prove that R-by-C Crozzle

is in NP. One way of doing this is to provide a non-

deterministic polynomial time algorithm for solving R-by-

C Crozzles. The following algorithms solves an instance

of the R-by-C Crozzle problem in non-deterministic poly-

nomial time.

1 Read in R, C, and the Words wi.

2 Compute length =
∑

|wi|.

3 Let R = minimum(R, length) and

C = minimum(C, length).

4 Non-deterministically pick those words that will be

used in the solution.

5 Non-deterministically assign each word a starting

row, starting column, and orientation (UP-and-

DOWN or BACK-and-FORTH).

Steps 1, 2, 4, and 5 take linear time (steps 4 and 5

make a linear number of non-deterministic choices). Step

3 takes constant time.

2

Since the original Crozzle problem found in The Aus-

tralian Women’s Weekly is a restricted version of R-by-C

Crozzle, we have the following corollary:

corollary. The original Crozzle problem is NP-

complete.

1Two improvements can be made. First, the width and
height can be bound by less then length. Consider, for example
a maximum width solution. Here half of the words must be
oriented UP-and-DOWN. Even if the UP-and-DOWN words
are taken from the shortest half of the input words the width
is still less than length.

Second, a more complex solution considers only a linear por-
tion of the grid. Initialization occurs when and where words
are placed. The cells for the letters of the word and the cells
adjacent to a word are initialized to blank to facilitate checking
that the solution is correctly connected.

3 SUMMARY

This paper completes the study on the complexity of the

Crozzle and R-by-C Crozzle problems (unless a polyno-

mial time algorithm for either is produced). It proves that

both problems are NP-Complete. These results build on

those of Gower and Wilkerson, who introduced the R-by-

C Crozzle problem in order to study the Crozzle problem.

They show that the R-by-C Crozzle problem is NP-Hard.

The key observation used to demonstrate that R-by-C

Crozzle is in NP is the following: since the solution must

form a connected unit, the portion of the R-by-C grid

that is used is bounded by the size of the input.

To satisfy our sense of curiosity, we ran the Java pro-

gram discussed in the Appendix on several small 10-

by-15 Crozzles, using randomness in place of the non-

determinism. The program was run 1,000,000 times on

each input.

Input Input Words

1 book bother keth
2 chemist church sarra
3 active assert movie deduction
4 active assert movie atkinson deduction

solutions lowest highest
Input found score score

1 209 34 50
2 144 40 54
3 5 48 66
4 0 - -

Random placement did not find a solution for any Croz-

zle with 5 or more words (e.g., Crozzle 4). Solution were

found for Crozzles with fewer words. More interesting

than the number of solutions is the frequency of their

scores. The following table gives the frequency of the

scores obtained from Inputs 1 and 2 above.

Crozzle 1
score 34 36 38 40 42 48 50
frequency 21 36 21 37 60 13 21

Crozzle 2
score 40 32 48 50 54
frequency 19 10 24 31 51

Gower and Wilkerson report that heuristic algorithms

designed to solve Crozzles never beat the readers of The

Australian Women’s Weekly. The above frequencies sug-

gest that the failure of such algorithms may be caused by

the high frequency of solutions having the highest score.

Thus, the chances of finding a winning solution are com-

paratively good. In particular, consider Crozzle 2, in

which over one of three of the solutions found had the

highest score.

APPENDIX

The appendix presents excerpts from a Java pro-

gram that solves R-by-C Crozzles. The pro-

gram implements the algorithm from Section 2 ex-

cept that the non-deterministic choices are replaced

by random choices. As seen in Section 3, this

is an inefficient approach to solving R-by-C Croz-

zles. The complete source is presently available at

http://www.cs.loyola.edu/~binkley/research/Crozzle.

One final note: the complexity of the Java code is

O(n2) because the source contains nested loops that ex-

amine every square on the grid (e.g., in function score).

It is possible to reduce this to O(n) by only considering

the part of the grid where words are to be placed. For

example, initialization would not set all grid squares to

blank, but rather it would only initialize those squares

where words are to be placed and the squares adjacent to

them. Initializing adjacent squares is necessary to check

for invalid crozzles (e.g., to check for words that butt end

to end.)

// crozzle.java

// usage: crozzle <file>

// input file format

// line 1: R, C, word_count

// rest: words (one per line)

class InvalidCrozzleException extends Exception {};

class Word

{

public static final int BACK_AND_FORTH = 0;

public static final int UP_AND_DOWN = 1;

protected int row;

protected int column;

protected int orientation;

public String word;

Word(String s)

{

row = -1;

column = -1;

orientation = BACK_AND_FORTH;

word = s;

}

public int length()

{

return(word.length());

}

void assign_random_location(int R, int C)

...

}

class Cell

{

...

}

public class crozzle

{

public static void main(String argv[])

{

RCcrozzle c = new RCcrozzle();

c.read();

c.place_words();

try

{

System.out.println("score " + c.score()

+ " i = " + i);

}

catch (InvalidCrozzleException e)

{

System.out.println("invalid crozzle");

}

}

}

class RCcrozzle

{

protected int R;

protected int C;

protected Word words[];

protected Cell grid[][];

RCcrozzle()

{

R = 0;

C = 0;

words = null;

}

private int read_int(java.io.StreamTokenizer st)

throws java.io.IOException

{

st.nextToken();

return ((int) st.nval);

}

public void read(java.io.DataInputStream f)

{

int max_word_count = 0;

java.io.StreamTokenizer st

= new java.io.StreamTokenizer(f);

st.parseNumbers();

try

{

R = read_int(st);

C = read_int(st);

max_word_count = read_int(st);

}

catch(java.io.IOException e)

{

System.out.println("read numbers failed");

}

int length = 0;

try

{

words = new Word[max_word_count];

int word_count = 0;

for(int i=0; i<max_word_count; i++)

{

String s = f.readLine();

// using all words now.

// For random inclusion use:

// if (random(2) == 0)

{

words[word_count++] = new Word(s);

length = length + s.length();

}

}

}

catch (java.io.IOException e)

{

System.out.println("read failed");

}

R = R < length ? R : length; // bound R and C

C = C < length ? C : length;

}

public void place_words()

{

for(int i=0; i<words.length; i++)

words[i].assign_random_location(R, C);

}

protected int score_for_char(char c)

...

protected boolean two_words_butt()

...

public boolean forms_connected_unit()

...

public int score()

throws InvalidCrozzleException

{

grid = new Cell [R+2][C+2];

for(int i=0; i<R+2; i++)

{

for(int j=0; j<C+2; j++)

grid[i][j] = new Cell(’.’);

}

...

}

/* returns score for placing letter at a location */

public int place(Cell grid[][], int row,

int column, char c)

throws InvalidCrozzleException

{

if (grid[row][column].empty)

{

grid[row][column].empty = false;

grid[row][column].c = c;

return(0);

}

else if (grid[row][column].c == c)

{

return(score_for_char(c));

}

else // grid[row][column].c is assigned 2 values

{

throw new InvalidCrozzleException();

}

}

}

References
[1] H. Corman, C. Leiserson, and R. Rivest. Algorithms. Mc-

Graw Hill, New York, 1991.

[2] M. Gower and R. Wilkerson. R-by-C crozzle: An NP-hard
problem. In Proceedings 1996 ACM Symposium on Applied
Computing, pages 73–76, 1996.

[3] G. Harris and J. Foster. Automation of the crozzle. In
Austrialian Computer Journal, volume 25(2), pages 41–48,
1993.

[4] H Lewis and C. Papadimitriou. Elements of the Theory of
Computation. Prentice-Hall, Englewood Cliffs, New Jersey,
07632, 1981.

[5] R. Rankin. Considerations for Rapidly Converging Ge-
netic Algorithms Designed for Applictions to Problems
with Expensice Evaluations Functions. PhD thesis, Uni-
versity of Missouri-Rolla, Rolla, Missouri, 1993.

