
perljvm: Using B to Facilitate a Perl Port To the Java Virtual

Machine

Bradley M. Kuhn
Department of Electrical and Computer Engineering and Computer Science

University of Cincinnati
Cincinnati, OH 45219

bkuhn@ebb.org
http://www.ebb.org/bkuhn

Abstract

perljvm is poised to be a functional JVM port of Perl. In designing perljvm, various ports of other languages
to the JVM were studied and classified. Using this data, it was determined that Perl’s B (back-end) compiler
modules provided the best path to accomplish a JVM port of Perl. Since the B modules provide access to to
the internal representation (IR) used by the perl back-end, perljvm concerns itself only with translating that
IR into JVM assembler, using the Jasmin assembler syntax. A JVM assembler code emitter module was
developed to minimize perljvm’s dependence on Jasmin. To support Perl’s native data types on the JVM,
equivalents for native Perl data structures must be designed and built in Java. Once perljvm is stable and
most common Perl features are supported, work can begin on using the JVM as an object model to integrate
Perl and Java objects seamlessly. At that time, integration with the JPL will be feasible.

Introduction

Perl is one of the most ported languages available for modern computing. However, Perl has yet to be ported
to the Java Virtual Machine (JVM) architecture. Such a port of Perl is useful for the following reasons:

• Many other very high level languages, including Ada, Eiffel, Java, Python, Scheme, and Tcl have
working JVM ports. Perl must keep pace with its peers.

• Hardware systems with embedded JVM processors, although rare today, continue to be the focus of
many research projects [7, 13, 16]. If and when such systems gain popularity, Perl must be ready to
support such systems. Indeed, such systems may be Perl’s best shot at embedded computing.

• Software systems (such as web browsers and the JEmacs project [4]) with embedded JVMs are com-
mon. Programmers who target applications for these systems have so far been an untapped user base
for Perl.

• Perl has yet to be ported to a system without a C compiler. Upon completion, a Perl port to the JVM
will provide a useful case study of porting Perl to architectures that lack a C compiler. Such a case
study will remain useful even if a C compiler is later ported the JVM.

Thus, a Perl port to the JVM is useful on many different fronts. Even considering the worst case scenario,
where the JVM architecture ceases to be used in the field, the Perl port the JVM is still useful as a case
study.

The rest of this paper is organized as follows: First, the Java-Perl Lingo (JPL) is discussed and considered.
Next, various different approaches used to port other languages to the JVM in the past are discussed. Each
approach is analyzed for its appropriateness for a Perl port to the JVM, and advantages and disadvantages for
each approach are discussed. Next, the actual approach taken by perljvm, a hybrid of previous approaches,
is considered. Following that, details concerning the actual implementation of perljvm, including various
hurdles that were faced, are presented. Finally, possible future directions for perljvm are speculated.

What the JPL Taught Us

The Java-Perl Lingo (JPL) is a system that is part of the core perl distribution that eases the integration of
Java and Perl. As Larry Wall frequently points out, it shows that Java’s and Perl’s semantics are interoperable
[17]. The JPL is useful to programmers who have access to both perl and a Java environment and want to
write some Java methods in Perl, instantiate Perl objects in Java, and/or instantiate Java objects in Perl.

This magic is accomplished through the Java Native Interface (JNI). This package allows a programmer
to create Java classes and methods in C. The developers of JPL used JNI to interface perl (which is written
in C) with the Java environment, providing a number of wonderful features.

However, such a solution can never be developed into a full Perl port to the JVM. The JNI is usually
not available on JVMs that are embedded in hardware or other software programs. Thus, while the JPL is
a powerful tool for those who use Java and Perl on a system where Perl is already fully supported, it will
never allow Perl to run on embedded JVMs.

In addition, JPL has some overhead. The running process of a JPL program must have an active instance
of libperl.so to run the Perl code as well as an active instance of a JVM to run the Java code. A native Perl
port to the JVM would run much faster, and would enable Perl to take advantage of advances in the state
of the art of JVM development.

Finally, JPL and perljvm really have different scopes. The JPL seeks to maximize flexibility of transition
between Java code and Perl code. Even though perljvm would seek to eventually provide that, that is only
a small part of the picture. The goal of perljvm is to run nearly any arbitrary Perl program natively in the
Java environment by generating a valid JVM class file that is the equivalent to the given Perl program.

Possible Approaches to a JVM Port

Traditionally, there have been four ways in which languages are ported to the JVM. They are as follows:

1. Implementation of a language interpreter in Java.

2. Compilation from the source language to Java source.

3. Direct compilation from the source language to JVM bytecode.

4. Mapping of language structures and idioms onto the JVM.

In the subsequent subsections, each of these approaches is considered in detail.

Implementation of a Language Interpreter in Java

For most languages, implementation of a language interpreter in Java is perhaps the most straight-forward
method of porting that language to the JVM. This approach was used by the Tcl [11] and Python [9]

2

ports. Since there are number of different compilers that can convert Java source into JVM bytecode, this
interpreter written in Java can run easily on the JVM.

When a program from the source language needs to be run on the JVM, this new interpreter must take
as input the source program, as well as the input that the source program is expecting. An eval construct
using these two input sets is then invoked, and in that manner, the source program is run.

This approach has a number of advantages. First, if the source language has a well-written specification,
or is a language with few constructs, based around a single paradigm (e.g., an object-oriented paradigm),
then implementing an interpreter for the language is often a simple matter of implementing the specification.
Design issues are often already decided by the specification or by the paradigm, greatly easing the burden
on the implementor.

A second advantage is that real-time, on-the-fly code evaluation (i.e., eval($string)) is always avail-
able. The Java program that implements the interpreter simply needs to instantiate a new instance of the
interpreter, and feed it $string as input.

However, this approach has two disadvantages, one of which is particularly problematic for a Perl port.
The first disadvantage is speed. Since hardware devices that have JVMs on a chip are still in the realm of
research labs, not the mass-market, most JVM implementations are done in software. The JVM bytecodes
are interpreted by this software. Thus as Per Bothner notes, ”if your interpreter for language X is written
in Java, which is in turn interpreted by a Java VM, then you get double interpretation overhead”. Such a
situation is unacceptable for Perl, which has always prided itself on speed.

Another disadvantage that might be acceptable for some languages, but is completely unacceptable for
Perl is code divergence. If a language has a well-defined specification that describes precisely the syntax and
semantics of the language, code divergence is not an issue. An implementation must adhere to the specifica-
tion. However, it has often been noted in the Perl community that ”the specification is the implementation”.
The community cannot tolerate divergent implementations. Indeed, much work in the mid-1990s was done
to stop the divergence of the Microsoft and Unix-like Perl implementations. It would surely be a tragedy if
a Perl port to the JVM went down the road of code divergence.

Thus, the only way to safely achieve an acceptable JVM port of Perl using this approach is to compile
perl , the existing C implementation of Perl, with a C compiler targeted to JVM. Experimental compilers
of this nature do exist [6], but they are far from ready for production. In addition, even such a port of
Perl would undoubtedly be slower than any of the other approaches. Indeed, given the relatively large size
of perl , such a port would most likely be completely inappropriate for JVM implementations embedded in
small hardware devices or other software programs.

Therefore, simply waiting for a C compiler to be targeted to the JVM is not the best approach for porting
Perl to the JVM. Other methods must be investigated and attempted.

Compilation from the Source Language to Java Source

Compilation of the a source language into Java source code is a possible approach for porting that source
language to the JVM. As was mentioned in above, compilers that target Java source to the JVM are widely
available. Thus, if, for every program in the source language, an equivalent program in Java could be
constructed automatically, then the source language would be effectively ported to the JVM.

The only real advantage to this approach is that the porter need not be concerned with the inner workings
of the JVM. This minor advantage does not outweigh the two grave disadvantages. First, the port becomes
immediately susceptible to changes in the Java language and its accompanying class libraries, which are
more subject to change than the JVM specification. Second, the Java source language is not as expressive as
JVM bytecodes. Although Java source is very close to JVM bytecodes, there are constructs (such as goto)
that exist on the JVM but do not exist in Java [3].

3

With these disadvantages and only one minor advantage, it is not surprising that there has yet to be any
language that has been successfully ported to the JVM using this method.

Direct compilation from the Source Language to JVM Bytecode

Another approach for porting a language to the JVM is to provide a compiler that targets the source language
to the JVM. This can be done either by writing a compiler from scratch (as was done for Scheme [3] and
Java), or by retargeting an existing compiler to the JVM (as was done for Eiffel).

The former method will cause code divergence, which is appropriate for Scheme and Java, since these
languages have detailed written specifications. As has been established, such code divergence is not reason-
able for Perl. The later method of retargeting a compiler to the JVM is reasonable for Perl, yet there is a
risk.

As we have seen with the JPL, a useful feature of a JVM port is to permit the source language and Java
to communicate smoothly via the common architecture of the JVM. When the Eiffel compiler was retargeted
to the JVM, the port was not ”aware” of the JVM. Thus, it has been a difficult road to use Eiffel’s JVM port
to integrate Eiffel and Java, since the compiler treats JVM bytecode as just another assembler syntax—not
as a rich object architecture. Plans to modify the Eiffel port to support integration with Java exist; however,
the design Perl’s port to the JVM must not inherently contain this limitation.

Mapping Language Idioms onto the JVM

The final approach for porting a language to the JVM is to map each language idiom onto the Java architec-
ture. If all the language features have semantic equivalents in Java or on the JVM, a mapping can be done
to allow the language to run on the JVM. ADA’s port to the JVM relied heavily on this approach [8].

This method, of course, must usually be combined with some Java or JVM code generation to be com-
pletely successful. However, it is worth categorizing this approach separately, since when used with a
retargeted compiler, the problem that the initial Eiffel port encountered is avoided.

The downside to this approach is that each language idiom must have an equivalent in Java or on the
JVM. If more than a few such idioms do not have equivalents, then a programmer must construct such
idioms. This is not unreasonable, but it does take time and effort.

perljvm : A Hybrid Approach

Given the varied approaches for porting a language to the JVM, choosing the right approach for Perl was a
difficult task. More than any other language, Perl has always prided itself on minimizing the downsides for
programmers. Since each approach to this port could have drawbacks, rigidly choosing just one approach
seemed unnecessarily problematic.

The best solution for Perl was a hybrid approach that attempted to minimize the disadvantages of all
these approaches while maximizing the advantages. Given the history of Perl culture, such a solution seemed
quite appropriate. Perl itself is ”happily derivative” and traces its etymological roots back to many different
languages. Thus, it is not surprising that the best approach to a JVM port of Perl would draw on all the
experiences of porting other languages to that architecture.

Thus, perljvm was born, a Perl to JVM compiler that draws on the various approaches of porting other
languages to the JVM, leveraging the various strengths of the different approaches.

Leveraging of the Existing perl Implementation

It is a common misconception that perl is an interpreter for Perl. The misconception arises from the fact
that perl has two components within the same actual binary. First, perl has a front-end compiler which

4

includes a lexer and parser that analyzes a Perl program and produces an intermediate representation (IR)
of the program, in the form of a syntax tree [2].

Second, perl has a back-end, which includes an implementation of the native Perl data types (such as
scalar, array, and hash), as well as the Perl Virtual Machine (PVM). The PVM can take the IR generated by
perl ’s front-end, along with the data type implementations, and evaluate the IR (i.e., execute the code given
by the Perl programmer). Thus, perl is not an interpreter; it is actually a compiler and a virtual machine
for Perl.

When seen in this fashion, the similarity between the perl environment and the Java environment are
striking. However, there are some key differences, which are as follows:

• The JVM has a detailed written specification. The PVM is documented primarily only in the source
code for perl .

• The JVM has very simple native data types, and relies on Java class libraries to provide more complex
types. The PVM has a number of complex native data types (e.g., hash, scalar and array).

• JVM has fewer operation codes (opcodes) than the PVM. Indeed, the PVM has a separate opcode for
nearly every Perl function in the perlfunc(1) manpage.

• Java compilers and JVMs are usually implemented separately. The PVM and the Perl compiler are
tightly coupled inside perl .

Thus, it is not possible to simply ”map” the PVM onto the JVM in any simple way. However, thanks to
the B modules, perljvm can utilize perl ’s existing front-end and much of the back-end to do the work of the
port.

Perl’s B modules allow the programmer implement their own back-ends separate from perl ’s back-end. A
module that is uses B has the opportunity to examine and manipulate the IR that was generated by perl ’s
front-end. In addition, B can be used to examine the internal data structures used by perl ’s back-end.

On the command line, the user interfaces to these back-ends via the O module. The O module acts
primarily as a wrapper, allowing the corresponding B module to be invoked. Thus, instead of running the
”default” perl back-end, a completely different back-end, written in Perl, can be chosen. (Please see [5] and
[10] for a more complete discussion of B and O.)

Taking advantage of this feature, the core of perljvm is implemented using B. Since all the facilities of
perl ’s front-end are provided, there is no need for perljvm to have its own lexer or parser for Perl. In addition,
perljvm can use B to examine the IR, which is roughly ”PVM code”, plus references to Perl’s native data
structures.

Using Jasmin Assembler

Thanks to the B module, perljvm does not need to parse Perl, find syntax errors, generate an IR, nor do any
front-end compiler work. That is already done by perl , and is completely accessible via the B module. With
all front-end issues already solved, the next challenge is the creation of valid JVM class files.

The JVM file format is quite complex. Directly generating such a file from a B module would be tricky.
There is no standard for assembler syntax for the JVM, so there are no tools in the standard Java environment
to easily generate JVM class files. Early in the project, this was a focus of much attention.

However, Brian Jepson proposed that instead of generating the JVM class file directly, perljvm should
instead generate output using the Jasmin assembler. Jasmin assembler is a syntax for writing JVM class files
that is similar to assembler formats used for non-virtual architectures [15]. This solution greatly reduced
the problem scope of perljvm. Mr. Jepson discusses this idea extensively in [10].

5

However, there was the concern that the Jasmin assembler format is not standardized; it is simply one
possible format for JVM bytecode assembler. Indeed, other formats do exist and are in use. Therefore, it
was imperative that perljvm rely on one particular assembler syntax as little as possible.

To alleviate this problem, the concept of JVM ”bytecode emitters” was introduced. First, a virtual base
class called B::JVM::Emit was created. All code that must emit Java bytecode uses the interface provided
by B::JVM::Emit, and all subclasses of B::JVM::Emit must provide implementations of B::JVM::Emit’s
interface specific to a given assembler syntax.

As an example, consider the following code. It creates a JVM class called Foo, with one static public
method, main, whose body has a single JVM dup instruction.

my $emit = new B::JVM::Jasmin::Emit("Foo");

$emit->methodStart("main([Ljava/lang/String;)V", "static public");

$emit->dup("main([Ljava/lang/String;)V");
$emit->methodEnd("main([Ljava/lang/String;)V");

If a standard assembler format for the JVM is ever created, one needs only implement B::JVM::StandardAssembler::Emit
as a subclass of B::JVM::Emit, and change the first line in the example above to:

my $emit = new B::JVM::StandardAssembler::Emit("Foo");

Assuming that B::JVM::StandardAssembler::Emit is implemented properly, the rest of the code will
function properly, generating the Foo class.

Data Type Support

With full access to the perl front-end, the B modules to manipulate the IR, and a code emitter object for
JVM bytecodes, most of the components for a Perl to JVM compiler are in place. However, recall that the
IR generated by perl assumes that a PVM and implementations of Perl’s native data types are available. To
successfully port Perl to the JVM, the data types that Perl considers native must be available on the JVM.

One approach would be to ”map” all of Perl’s data types into equivalent data types already available
for the JVM. Unfortunately, in most cases, this approach is not possible, since Perl’s native data types
are so unique. For example, at first glance, it might seem feasible to map Perl’s hash into an object of
type java.util.Hashtable. However, Java’s hash tables do not understand the concept of tie. Similarly,
scalars cannot be mapped onto java.lang.String, since scalars act like numbers when they are supposed
to, and Java strings do not. The uniqueness and flexibility of Perl’s data types, loved by Perl programmers
everywhere, become the headache of the programmer who wants to port Perl to an architecture whose data
types are not so unique and flexible.

Thus, for each data type that perl ’s back-end considers ”native”, an equivalent class for it must exist
on the JVM. Since the Java language easily compiles to the JVM in an idiomatic way, these classes are
implemented in Java. Each class provides an interface that Perl expects for the data type, and since the
implementation is in Java, the data type can run on the JVM.

As an example, consider the following portion of the class SvBase, which is an implementation of perl ’s
SvNULL [1]:

class SvBase implements Cloneable {
boolean defined;

SvBase() {
defined = false;

}

6

boolean isDefined() {
return defined;

}

void undef() {
defined = false;

}
// [...]

}

Thus, using this class, the Perl program:

defined $bar;

could be compiled to the Jasmin equivalent:

.class public main

.super java/lang/Object

.method static public main([Ljava/lang/String;)V

.var 0 is foo LSvBase
new SvBase
dup
astore_0
dup
invokespecial SvBase/<init>()V
invokevirtual SvBase/defined()Z

The Java equivalent of that is as follows (perljvm does not actually translate to Java; the following code
is provided for didactic purposes only):

class main {
static public void main(String argv[]) {

SvBase bar = new SvBase();
bar.defined();

}
}

This example gives the flavor of how the native Perl data types are implemented in Java to provide access
to Perl data types on the JVM. An in-depth discussion of these Java classes will be available in [12].

Putting It All Together

The final step to achieve the the JVM port is to support the opcodes in the IR. In this area, the B module
is most useful. Perljvm descends the syntax tree provided by the IR, in a depth first fashion. At each
opcode, perljvm processes it using the emitter to generating Jasmin code. The emitted Jasmin code utilizes
the various data type classes to perform the task the opcode would have performed had it been run on the
PVM.

As an example, consider the follow code:

sub B::SVOP::JVMJasmin {
my $op = shift;

7

my $name = $op->name();
...
my $curMethod = #
...
if ($name eq "gvsv") {
my $stashName = $op->gv->STASH->NAME();
my $gvName = $op->gv->NAME();

$emit->getstatic($curMethod, "Stash/DEF_STASH", "LStash;");

$emit->ldc($curMethod, cstring $stashName);
$emit->invokevirtual($curMethod,

"findNamespace(Ljava/lang/String;)LStash;");

$emit->ldc($curMethod, cstring $gvName);
$emit->invokevirtual($curMethod,

"Stash/findGV(Ljava/lang/String;)Linternals/GV;");
$emit->invokevirtual($curMethod, "GV/getScalar()LScalar;");

}
...

}

In this code segment, we see part of the subroutine, B::SVOP::JVMJasmin. The name indicates that it
is the code for handling opcodes of type SVOP for the JVM port using Jasmin. SVOP is a name provided and
required by the B module. The JVMJasmin portion of the name is provided by the user of B, and is usually
given on the command line when using the O module [5, 10].

The first argument when opcode subroutines are invoked is the opcode object itself. Usually, as in this
case, the name() method is called to decide how to handle the particular opcode.

In this example, the code for handling the SVOP named gvsv is shown. The gvsv opcode is used when a
dynamically scoped variable is mentioned. This opcode must find the actual data of the variable by searching
for it in the name space. To generate the equivalent Jasmin code for this opcode, the three Java classes
Stash, GV, and Scalar must be used. These are equivalents to stashes, GVs and SVs in the perl core [1].

If the variable being looked for happens to be in the $main::foo, then the code above generates Jasmin
assembler that looks something like this:

getstatic Stash/DEF_STASH LStash;
ldc "main"
invokevirtual findNamespace(Ljava/lang/String;)LStash;
ldc "foo"
invokevirtual Stash/findGV(Ljava/lang/String;)Linternals/GV;
invokevirtual GV/getScalar()LScalar;

The Java equivalent of that is as follows (perljvm does not actually translate to Java; the following code
is provided for didactic purposes only):

Stash.DEF_STASH.findNamespace("main").findGV("foo").getScalar();

If you compare this to the process described in [1] of how a stashes work inside perl , it is easy to see that
this is equivalent code for a gvsv opcode (given that the Stash and GV Java classes do their jobs correctly!).

Thus, a programmer wishing to add support for new opcodes in perljvm goes through the following
procedure:

8

1. Analyze the opcode in the perl back-end, and see if it uses any native data types that do not have any
equivalent Java classes yet.

2. If such Java classes are needed, write and test them.

3. Add a method B::OP_TYPE::JVMJasmin, and write code to emit equivalent JVM assembler for the
new opcode, utilizing the Java classes as necessary.

It should be noted that the approach taken for perljvm is not without trade-offs. Since perljvm provides
no actual interpreter nor compiler for Perl on the JVM itself, constructs such as eval($string) will not be
supported. For these cases, it is most reasonable to wait until C itself is retargeted completely to the JVM
[6]. Once perl itself is available on the JVM, perljvm can invoke it only as a last resort, but continue to
support the rest of Perl natively on the JVM for better performance.

Future Directions

The first goal of perljvm is to continue adding support for more opcodes and more of Perl’s native data
types. At the time of writing, scalars and related operations were supported robustly and completely, and
support for arrays was beginning to take shape. However, the subset of Perl that perljvm supports continues
to grow quickly, and assistance has been solicited from other developers in the Perl community. By the time
of the The Perl Conference 4.0, there will hopefully be much more of Perl supported on the JVM.

Once a usable subset of Perl is supported, perljvm should be integrated with the JPL. Users should
have the option to have either native JVM code generated from JPL programs (via perljvm), or have the
JNI-based Perl/Java mix generated by the existing JPL implementation. This would allow users to use some
existing JPL code on embedded JVMs, and on systems with working JVMs but without libperl.so around.

Integration with Per Bothner’s Kawa system [3], and eventual JEmacs [4] support for Perl could be
quite useful. Kawa is designed to give some support services on the JVM for non-Scheme languages, and
such services might make perljvm’s job a little bit easier. In addition, if perljvm can work well with Kawa,
then JEmacs can allow scripting in Perl.

As a generalization of Kawa integration, it might prove interesting to experiment with using the JVM as an
object model to integrate Perl and Java objects seamlessly. Python already supports seamless communication
with Java via Jpython, and it is hoped that similar support can be created for Perl. In addition, since so many
languages have JVM ports, it might be possible to use the JVM to allow different languages to communicate,
using the JVM as generalized object model. More work must be done to determine if such a powerful use of
the JVM is feasible.

Finally, perljvm appears to be the first use of B that is not heavily tied to the perl core itself (as the B::CC
is). Care has been taken to carefully document what each opcode does, and what it needs to know about
Perl’s native data types. As the project progresses, it may turn out that perljvm is useful as an independent
documentation and ”reverse engineering” of the PVM and Perl’s native data types. This information might
be useful in future Perl efforts, such as Topaz.

Availability

Perljvm is currently available as part of B::JVM::Jasmin on CPAN, and at http://www.ebb.org/perljvm. It
is copyrighted by Bradley M. Kuhn, and is licensed under the same license as perl itself.

Acknowledgements

Mr. Kuhn would like to thank USENIX for a student scholarship and stipend to research perljvm.

9

Brian Jepson released an early prototype of B::JVM::Jasmin, the core module used by perljvm. Although
the current B::JVM::Jasmin shares no code with Mr. Jepson’s prototype, Mr. Jepson was the first to
introduce the idea of using Jasmin to facilitate a port of Perl to the JVM. His help is greatly appreciated.

Finally, Mr. Kuhn thanks Matthew T. O’Connor, who has assisted in the implementation of perljvm
since the earliest versions.

References

[1]
Aas, Gisle. ”Perl Guts Illustrated, Version 0.09”. [Online] Available at http://gisle.aas.no/perl/illguts/ .
November 1999.

[2]
Aho, Alfred V., et al. Compilers: Principles, Techniques, and Tools Addison-Wesley, Reading, Mas-
sachusetts, USA, first edition, March 1988.

[3]
Bothner, Per. ”Kawa — Compiling Dynamic Languages to the Java VM”. USENIX 1998 Annual
Technical Conference: Invited Talks and FREENIX Track , pages 225–272. New Orleans, Louisiana,
USA. June 1998.

[4]
Bothner, Per. ”JEmacs–The Java/Scheme-based Emacs”. USENIX 2000 Annual Technical Confer-
ence: FREENIX Track . To Appear. San Diego, CA, USA. June 2000.

[5]
Beattie, Malcolm. ”The Perl Compiler”. The Perl Journal . Volume 1, issue 2 (Summer 1996), pages
34−36.

[6]
Cifuentes, Cristina, et al. ”UQBT — A Resourceable and Retargetable Binary Translator”. [Online]
Available at http://archive.csee.uq.edu.au/˜csmweb/uqbt.html#gcc-jvm, March 2000.

[7]
Cladingboel, Chris. ”Hardware Compilation and the Java Virtual Machine”. [Online] Available at
http://www.wadham.ox.ac.uk/˜chris/project , July 1998.

[8]
Comar, Cyrille, et al. ”Targeting GNAT to the Java Virtual Machine”. In Proceedings of the conference
on TRI-Ada ’97 , pages 149−161. 1997.

[9]
Hugunin, Jim. ”JPython”. [Online] Available at http://www.jpython.org , March 2000.

[10]
Jepson, Brian. ”Taking Perl to the Java Virtual Machine”. The Perl Journal . Volume 4, issue 4
(Winter 1999), pages 53−59.

[11]
Johnson, Ray. ”Tcl and Java Integration”. Technical Report, Sun Microsystems Laboratory, February
1998. [Online] Available at http://www.scriptics.com/products/java/tcljava.pdf .

10

[12]
Kuhn, Bradley M. ”An Implementation of Native Perl Data Types in Java.” In Preparation.

[13]
Sun Microsystems, Inc. ”The K Virtual Machine (KVM) White Paper”. [Online] Available at
http://java.sun.com/products/kvm/wp. January 2000.

[14]
Lindholm, Tim and Yellin, Frank. The Java Virtual Machine Specification. Addison-Wesley, Reading,
Massachusetts, USA, first edition, September 1996.

[15]
Meyer, Jon and Downing, Troy. Java Virtual Machine. O’Reilly and Associates, Sebastopol, CA,
USA, first edition, March 1997.

[16]
Tremblay, Marc and O’Connor, Michael. ”picoJava: A Hardware Implementation of the Java Virtual
Machine”. [Online] Available at http://infopad.eecs.berkeley.edu/HotChips8/4.3 . October 1996.

[17]
Wall, Larry. Personal Communication. August 1998.

Copyright c© 2000 Bradley M. Kuhn.
Verbatim copying of this entire paper is permitted in any medium provided this notice is preserved.

11

